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[1] We present an analysis of the model by Gnanadesikan
[1999] for the pycnocline depth in the ocean. An analytic
solution for the overturning strength as a function of the
meridional pressure difference is derived and used to
discuss their mutual scaling. We show that scaling occurs
only in two unphysical regimes of the model. In the absence
of the Southern Ocean (SO) processes, i.e., for a northern
overturning cell, the volume transport is proportional to the
square root of the pressure difference. Linear scaling is seen
when the overturning is restricted entirely to the SO, i.e.,
when no northern downwelling exists. For comparison, we
present simulations with the coupled climate model
CLIMBER-3a which show linear scaling over a large
regime of pressure differences in the North Atlantic (NA).
We conclude that the pycnocline model is not able to
reproduce the linear scaling between its two central variables,
pressure and volume transport. INDEX TERMS: 4532
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1. Introduction

[2] The meridional overturning circulation in the Atlantic
is a central challenge to our understanding of global climate
dynamics. Gnanadesikan [1999] (hereinafter referred to as
G99) presented a model for the deepmeridional circulation in
terms of the pycnocline depth (PD). This idealised model has
been under intense investigation as a possible paradigm for
the meridional overturning circulation [Gnanadesikan and
Hallberg, 2000; Saenko and Weaver, 2003; Gnanadesikan et
al., 2002]. Furthermore it has been used to investigate the
qualitative importance of different physical feedbacks on the
oceanic circulation [Klinger et al., 2003; Gnanadesikan et
al., 2003; Kamenkovich and Sarachik, 2004]. A qualitative
feature of the deep meridional overturning circulation is the
scaling relation between the volume transport and the
meridional density difference in the Atlantic [Bryan, 1987].
Picking up Bryan’s scaling arguments but assuming a
constant PD in the Atlantic Rahmstorf [1996] proposed a
linear relation which he demonstrated in the oceanic general
circulation model (GCM) MOM-2. Park [1999] and Scott et
al. [1999] derived the same scaling in a Stommel-type box
model. GCM simulations of the ocean suggest that this
linear relation carries over from the density to the pressure

difference [Hughes and Weaver, 1994; Thorpe et al.,
2001]. The linear scaling relation between pressure differ-
ence and maximum overturning strength has since been
demonstrated to be a robust feature in oceanic GCM
simulations A. Griesel et al. (The role of eddies for the
meridional pressure gradient and the strength of the
Atlantic overturning circulation, manuscript in preparation,
2004; hereafter referred to as Gr04). In section 4 we present
simulations with the coupled climate model CLIMBER-3a
further supporting these findings.
[3] The G99 model contains four physical processes

which influence the PD in the ocean. The balance of the
pressure gradient in the NA and the frictional forces within
the boundary currents leads to an equation for the northward
volume transport

Tn ¼
CD

bL nð Þ
y

� Dp
r

¼ CgDr

rbL nð Þ
y

� D2 � gngDr � D2 ð1Þ

The pressure gradient is parameterised through the density
difference in the NA Dr, the north-south distance Ly

(n) over
which the gradient occurs and the PD D.

Dp ¼ gDDr ð2Þ

The constant gn combines Ly
(n) with b, r and C (the

meridional derivative of the Coriolis parameter f, the density
and a proportionality constant of order one). g is the gravity
constant. The quadratic dependence on D occurs due to the
vertical integration in order to obtain a volume transport. In
the SO the model includes the Drake passage effect through
a wind-driven upwelling which does not explicitly depend
on the PD Ts

(e) = (Lxt)/(rf ) � 2ge. t and Lx are the wind
stress in the SO and the circumference around Earth at the
latitude of Drake Passage. Additionally G99 includes an
eddy induced return flow

T gmð Þ
s ¼ Lxved � D � ggm � D ð3Þ

where ved is the transport velocity which G99 parameterised
following Gent and McWilliams [1990] while we focus here
on its dependence on the PD. The fourth term in the model
is associated with low-latitudinal upwelling described by an
advection-diffusion balance w@zr = Kv@zzr in the tropics
which yields

Tu ¼
KvAu

D
� gu

D
ð4Þ

where Kv and Au are the diapycnal diffusivity and the
horizontal area of upwelling, respectively. All non-negative
constants gx have been introduced for convenience. Note
that the underlying assumption of the model is that these
four process can be described using the same value D for
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the PD throughout the Atlantic. Equation (1) requires
furthermore that the vertical extension of the northward
volume flow is also given by D. Accepting these
assumptions, the conservation of volume then results in
the governing equation of the model

0 ¼ gngDr � D3 þ ggm � D2 � 2ge � D� gu ð5Þ

It can be shown that for all parameter settings the model has
at most one solution with non-negative PD. In section 2 we
give this solution analytically in terms of the volume
transport Tn as a function of the pressure difference Dp and
discuss, in section 3, its scaling with Dp. In section 4 we
compare the results with simulations with the coupled
climate model CLIMBER-3a.

2. Solution for the Volume Transport Tn

[4] In order to obtain an analytic solution of the model
we rewrite equation (1) to get an expression of the PD as a
function of volume transport Tn and pressure difference Dp

D ¼ Tn= gnDpð Þ ð6Þ

In the most interesting case of non-zero volume transport,
Tn 6¼ 0, we can insert the equality (6) into the volume
conservation equation (5) to get

0 ¼ Tn þ
ggm

gn

Tn

Dp
� 2ge � gugn

Dp

Tn
ð7Þ

Multiplying by Tn yields a quadratic equation in Tn with two
solutions of which only one is non-negative

Tn ¼
gnDp

gnDpþ ggm
ge þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2e þ gu gnDpþ ggm

� �q� �
ð8Þ

Note that despite the fact that the governing equation (5) is
cubic in D, the model does have at most one physical

solution given by equation (8). The model does therefore
not bear the possibility of multiple stable modes of the deep
meridional overturning circulation as suggested by simula-
tions with climate models of different complexity [Stommel,
1961; Manabe and Stouffer, 1988; Rahmstorf, 1995, 1996;
Ganopolski et al., 2001; Prange et al., 2003]. This is to be
expected given that the model does not include a salt-
advection feedback as proposed by Stommel [1961].
Figure 1 shows the solution for different diapycnal mixing
coefficients Kv. The results were obtained using the
numerical values given by G99. Note that the solution (8)
depends continuously on the diapycnal mixing coefficient
Kv / gu. No change in the quality of the solution (8) occurs
in the absence of the low-latitudinal upwelling, where

T Kv¼0ð Þ
n ¼ 2gegnDp

gnDpþ ggm
¼ gnDp

gnDpþ ggm
� T eð Þ

s ð9Þ

In contrast to the behaviour for vanishing Kv, the
elimination of the SO processes changes the quality of the
solution as can be seen from equation (8) and will be
discussed in the next section.

3. Scaling of the Volume Transport Tn

[5] Next, let us discuss the scaling of the volume trans-
port Tn with the meridional pressure difference Dp. First,
consider the situation without the SO processes, i.e., Ts

(e) =
Ts
(gm) = 0. The scaling can be obtained from the general

solution in equation (8) with ge = ggm = 0. More illustrative
is the derivation from the original equations for the volume
transport (equations (1) and (4)). The fact that the northern
downwelling has to be balanced by the low-latitude
upwelling Tn = gnD � Dp = Tu = gu/D implies that

D noSOð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
gu

gnDp

r

 Dpð Þ�1=2; ð10Þ

i.e., the PD decreases with increasing pressure difference in
the NA. Using this expression to replace D in the
parameterisation of Tn in equation (1) yields

T noSOð Þ
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gugn � Dp

p



ffiffiffiffiffiffi
Dp

p
ð11Þ

In connection with equation (2) we get the scaling Tn
(noSO) 


(Dr)1/3 which was derived first by Bryan [1987].
[6] Next let us add the SO winds, but neglect the eddy-

induced return flow, i.e., ggm = 0. The solution (8) then
becomes Tn = ge +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2e þ gugnDp

p
, which goes to a constant

Tn ! 2ge = Ts
(e) = const. in the wind-driven limit, i.e., for

small vertical diffusivity gu � ge
2/(gnDp). As expected no

scaling between pressure difference and volume transport is
observed in this case.
[7] In order to discuss the scaling behaviour in the

presence of both SO processes in the model, we plot the
solutions shown in Figure 1 in double logarithmic scale in
Figure 2. For small Dp all solutions which include the SO
processes have slope one which corresponds to a linear
scaling of the volume transport with the pressure difference.
For comparison the solution without the SO processes
from equation (11) has been included as the solid curve in
Figure 2 showing the one-half slope. This result can be

Figure 1. The analytic solution of the conceptual model
for the volume transport Tn as a function of the meridional
pressure difference Dp for different values of the diapycnal
diffusivity Kv. The dots represent simulations with the
coupled model CLIMBER-3a which contains an oceanic
GCM. The simulations exhibit a linear scaling in contrast to
the conceptual model.
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understood from the general solution in equation (8) which
also sets the scale Dps for which the linear relation holds.
For Dp � Dps � ggm/gn the solution (8) becomes

Tn ¼
gnge

ggm
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

guggm

g2e

r	 

� Dp 
 Dp; ð12Þ

i.e., Tn is linear in the meridional pressure difference Dp.
Using the numerical values given by G99, we obtain an
estimate for the pressure scale Dps = 31.25 hPa which is
consistent with the scaling seen in Figure 2. Simulations
with the oceanic general circulation model MOM-3 show a
linear scaling of Tn with Dp for a variety of parameter
settings, including the case of zero diapycnal mixing
(A. Griesel, Gr04, 2004). The pressure scale in these
simulations is of the order of Dps 
 50 hPa which is in good
agreement with the above estimate.
[8] The physical meaning of the scaling regime is seen

when multiplying Dps with D which gives Tn � Ts
(gm),

which means that the scaling occurs only when the
circulation is completely dominated by the SO processes,
i.e., when the eddy-induced return flow in the Southern
Ocean is much stronger than the downwelling in the NA.
This situation is not consistent with the underlying physical
assumption of the model of an interhemispheric meridional
overturning circulation and it does not describe the observed
circulation in the ocean. From equations (6) and (12) we can
see that in the linear scaling regime the pycnocline depth
does not vary with the pressure difference, in contrast to the
situation without SO processes (equation (10)) where
D decreases with Dp. From equation (2) we see that for
constant D the pressure difference scales in the same way as
the density difference Dr 
 Dp making the linear scaling a
simple consequence of the initial assumption that Tn / Dr
(equation (1)).

4. Comparison With Simulations

[9] The linear relationship between the maximum over-
turning strength and the density difference Dr which was

observed by Rahmstorf [1996] in a oceanic GCM is
reflected in the parameterization of the northern down-
welling in equation (1). In the conceptual model, however, it
does not carry over to the pressure difference, as was shown
in the previous section. In order to check this scaling we
carried out simulations with the coupled climate model
CLIMBER-3a. The model contains an atmosphere and a
sea-ice module as well as the oceanic general circulation
model MOM-3. The effect of baroclinic eddies was
included through a parameterization following Gent and
McWilliams [1990] with a coefficient of kgm = 2.5 � 106 cm2

s�1. For a full description of the model see M. Montoya
et al. (The Earth System Model of Intermediate Complexity
CLIMBER-3a: Description and performance for present
day conditions, manuscript in preparation, 2004). Starting
from the present day equilibrium simulation with a
maximum overturning strength of 12 Sv, we apply a
negative salinity forcing of different strength to the
NA convection sites (between 50�N and 80�N) as described
by A. Levermann et al. (Dynamic sea level changes
following a shutdown of the thermohaline circulation,
submitted to Climate Dynamics, 2004). This leads to a
decrease in the meridional pressure difference in the NA and
therefore a weakening of the meridional overturning. A
positive salinity forcing strengthens the overturning and
increases the pressure difference. Figure 1 shows the
simulations as black dots. The pressure was taken at a depth
of 1500 m corresponding to the center of the overturning cell
in the simulations. The differences were taken between the
zonal average between 50�N and 80�N and the zonal average
between 20�N and 30�N. This corresponds with the
meridional pressure difference in the NA that enters
equation (1). As seen in Figure 1 the maximum meridional
overturning in the Atlantic scales linearly with the pressure
difference in the NA in the simulations. The vertical
diffusivity in the coupled model was kept constant at kv =
0.1 cm2 s�1. Thus the simulations correspond to the dashed
solution curve in Figure 1. Simulations and conceptual
model do neither agree quantitatively using the values
suggested by G99 nor is the qualitative behaviour of the two
main quantities (pressure and volume transport) reproduced
in the conceptual model. These results are supported by
recent findings by A. Griesel (Gr04, 2004) with an oceanic
GCM. Their work shows that the linear scaling between
pressure and overturning strength is a robust feature. It is
independent of changes to various parameters including the
Gent and McWilliams diffusivity coefficients. In order to
emphasize the fact that the linear scaling Tn 
 Dp
corresponds to constant D we plot in Figure 3 the PD as
defined by G99 for our simulations. In contrast to G99 in an
OGCM we find in our coupled model no significant
variation of the PD for varying pressure difference.

5. Conclusions

[10] By giving an analytic expression for the meridional
overturning strength Tn as a function of the meridional
pressure difference Dp, we discuss the scaling of the two
main quantities of the conceptual model introduced by G99.
The model exhibits two scaling regimes which both corre-
spond to unphysical situations. Linear scaling occurs in a
situation where the eddy-induced return flow is much

Figure 2. The same curves as in Figure 1 in double
logarithmic scale. The dashed line corresponds to the
solution without the SO processes and shows a one-half
scaling Tn 


ffiffiffiffiffiffi
Dp

p
. In contrast to this the solutions which

include the SO processes show a linear relationship Tn 
 Dp
in the unphysical regime Dp � Dps.

L17302 LEVERMANN AND GRIESEL: A MODEL FOR THE OCEANIC PYCNOCLINE DEPTH L17302

3 of 4



stronger than the northern downwelling. This corresponds
to a circulation which is localized entirely in the SO and in
which all downward volume transport is due to the eddy-
induced return flow. This situation is inconsistent with the
physical assumption of an interhemispheric overturning cell
underlying the model and the isopycnal nature of the return
flow.
[11] The second scaling regime corresponds to a purely

northern cell where the upwelling takes place entirely in low
latitudes, described by an advection-diffusion balance. In
this case the overturning is proportional to the square root of
the pressure as reported by Bryan [1987]. The scaling was
checked using the coupled climate model CLIMBER-3a
with a parameter setup comparable to the conceptual model,
i.e., including effects of baroclinic eddies following Gent
and McWilliams [1990] and a vertical diffusivity of kh =
0.1 cm2 s�1. The simulations exhibit a linear scaling and
therefore support previous studies [Hughes and Weaver,
1994; Rahmstorf, 1996; Thorpe et al., 2001] with
comprehensive climate models. The PD does not vary
significantly as a function of the pressure difference in our
simulations.
[12] We conclude that the conceptual model of the PD

can not reproduce the scaling between its central variables,
the pressure and the volume transport. Besides possible
criticism regarding the specific parameterizations of the four
physical processes contained in the model, the assumption
of a universal D for all these processes seems questionable.
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Figure 3. Pycnocline depth for the simulations shown in
Figure 1 as a function of the meridional pressure difference
Dp in the NA. Definition and displayed depth range were
taken as by G99.
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