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We present two advances in representing variable renewables (VRE) in global energy-economy-climate 

models: accounting for region-specific integration challenges for eight world regions and considering 

short-term storage. Both advances refine the approach of implementing residual load duration curves 

(RLDCs) to capture integration challenges. In this paper we derive RLDCs for eight world regions (based 

on region-specific time series for load, wind and solar) and implement them into the REMIND model. 

Therein we parameterize the impact of short-term storage using the highly-resolved model DIMES. All 

RLDCs and the underlying region-specific VRE time series are made available to the research community. 

We find that the more accurate accounting of integration challenges in REMIND does not reduce the 

prominent role of wind and solar in scenarios that cost-efficiently achieve the 2°C target. Until 2030, VRE 

shares increase to about 15-40% in most regions with limited deployment of short-term storage 

capacities (below 2% of peak load). The REMIND model’s default assumption of large-scale transmission 

grid expansion allows smoothening variability such that VRE capacity credits are moderate and 

curtailment is low. In the long run, VRE become the backbone of electricity supply and provide more 

than 70% of global electricity demand from 2070 on. Integration options ease this transformation: 

storage on diurnal and seasonal scales (via flow batteries and hydrogen electrolysis) and a shift in the 

non-VRE capacity mix from baseload towards more peaking power plants. The refined RLDC approach 

allows for a more accurate consideration of system-level impacts of VRE, and hence more robust 

insights on the nature of power sector decarbonization and related economic impacts. 
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1. Introduction 
Future power systems will likely show a significant share of renewable energy of which a large 

contribution will come from the variable1 renewable energy sources (VRE): wind and solar photovoltaics 

(PV). This is indicated by current high annual growth rates (end-2009 through 2014: 19% for wind 

capacity and 50% for solar PV capacity, [1]) as well as renewable support schemes and ambitious policy 

targets (164 countries had defined renewable targets by early 2015). 

Global energy-economy-climate models for cost-optimal climate mitigation scenarios typically also show 

a prominent role of VRE for low-carbon power supply [2]–[8]. However, the inability of these models to 

explicitly represent the time-scales relevant for the short-term variability of VRE supply and electricity 

demand limits their ability to capture the challenges and options of integrating VRE. Recent studies 

based on detailed power market models have shown that integration costs, or the decreasing impact of 

variability on the economic value of VRE generation, can be as high as long-term projection of VRE 

generation costs [9]–[14], suggesting that the bias from an inaccurate representation of variability may 

be large. As VRE generation costs decrease below those of conventional generation, in particular with 

increasing CO2 prices, integration challenges increasingly become the key determinant of the role of VRE 

generation in future low-carbon power systems. Hence, accounting accurately for VRE integration is a 

prerequisite for deriving robust mitigation scenarios, estimating economic impacts of climate policies 

and determining the specific role of VRE. 

Over the last years, significant efforts were made by modellers of the long-term evolution of the energy-

economy-climate system to address this important shortcoming. Different modelling approaches for 

representing variability were developed (see overviews in [7], [15]). The so-called RLDC approach was 

introduced and applied to a REMIND version for the German energy system and economy in [15] and 

further refined and applied to the European region in the MERGE model in [16]. Its core is a model 

implementation of residual load duration curves (RLDCs) that change endogenously with wind and solar 

PV deployment. These curves capture the temporal matching of VRE supply with load, and thereby 

capture the drivers of so-called “profile costs”, which account for the dominant share of VRE integration 

costs [10], [13], [17]. While profile costs can even be negative at low shares, e.g., for solar PV in many US 

regions, profile costs are the largest cost impact imposed by VRE variability at higher shares of VRE2, i.e., 

they tend to be substantially larger than costs related to additional balancing or grid requirements of 

VRE. Profile costs encompass three major effects: a low capacity credit and resulting requirements for 

firm capacity, reduced utilization of the capital embodied in dispatchable plants3, and over-produced4 

VRE generation. All these three effects are captured by RLDCs [10], [17]. RLDCs hereby also account for 

                                                           
1
 “Variable” (or sometimes intermittent) is used to describe generators that rely on fluctuating weather conditions 

(wind and solar plants) and thus can hardly be controlled in their power output. 
2
 The reason is that the supply of additional VRE plants is correlated with the existing VRE plants and thus the 

matching with residual demand gets unfavorable at higher VRE shares. 
3
 In principle, the utilization is reduced for all dispatchable plants; however, for capital-intensive base-load plants 

this is particularly costly. 
4
 Over-produced VRE generation exceeds electricity demand and cannot directly be used. It needs to be curtailed if 

it cannot be used as an alternative input e.g. for electricity storage. 
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the diminishing marginal value of additional VRE generators due to correlation with existing VRE 

generation [11], [13]. 

This paper presents two key refinements of the RLDC approach: a region-specific representation of 

integration challenges for several world regions and a sophisticated representation of storage 

parameterized by the highly-resolved Dispatch and Investment Model for Electricity Storage (DIMES) 

model, which optimizes investments and dispatch of power plants and storage technologies based on an 

hourly temporal resolution. 

1) Integration challenges can significantly differ around the world, in particular at VRE shares of up 

to about 30% [17]. We apply the RLDC approach for the first time to more than one region. It is 

parameterized from data for eight world regions and implemented for eleven5 regions of the 

global energy-economy-climate model REMIND. This requires a region-specific parameterization 

of RLDCs based on global time series data for VRE supply and load. Highly resolved load data is 

hardly available for most developing and emerging economies and it has been a major effort to 

collect a range of time series. To foster adoption of the methodology by other modellers, all 

RLDCs that have been derived to parameterize REMIND and the underlying VRE supply time 

series are available in the supplementary materials to this paper. 

2) The second key refinement of the RLDC approach is a sophisticated representation of short-term 

storage, which is based on a parameterization by a large set of model runs6 conducted by the 

highly-resolved DIMES model. Our results indicate that without a representation of storage 

operating on diurnal time scales, the potential of solar PV tends to be underestimated. In 

addition, the approach contains an endogenous representation of long-term storage via 

hydrogen electrolysis, which was also employed in [15], [16]. 

The resulting model representation of variability differentiates between a broad range of wind and solar 

PV shares, a number of world regions and accounts for potentially important integration options such as 

storage, transmission grid costs for large area pooling (which is a default assumption in REMIND), and 

the adaptation of the non-VRE generation capacities in response to VRE deployment. Based on the 

methodological advances, mitigation scenario results become more robust and thus more relevant for 

policy advice.  

The paper is structured as follows. We introduce the method in section 2 and present results in section 

3. In a first results section (3.1) we illustrate based on RLDCs how integration challenges differ (and do 

not differ) between regions, VRE mixes and shares. We also discuss the impact of short-term storage on 

RLDCs. In a second results section (3.2) we relate REMIND scenario results based on the implemented 

RLDCs to the region-specific integration challenges. In the presentation of the results we focus on the 

three regions Europe, USA and Sub-Saharan Africa because they show an instructive range of integration 

challenges. 

                                                           
5
 Three REMIND model regions have no individual parameterization due to a lack of load data. They are 

approximated by the representations of related model regions. 
6
 1352 DIMES model runs result from parameterizing 8 regions for gross wind and solar shares each ranging from 

0% to 120% (in 10% steps). 
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This paper is part of a special section in this Energy Economics issue on system integration challenges of 

VRE and the representation of these challenges in global energy-economy-climate models, resulting 

from the ADVANCE project. For a detailed comparison of the REMIND RLDC representation of system 

integration challenges with other modelling approaches in other IAMs, see [18] (this issue). The relative 

importance of costs, resource potentials and integration challenges for VRE deployment in REMIND and 

the other contributing IAMs is analyzed in [19] (this issue). 

2. Method 
This section is structured as follows. We briefly describe the REMIND model in section 2.1 and the 

scenario definitions in section 2.2. In the following subsections we present the three key methodical 

steps that have been conducted to improve the REMIND model (illustrated in Figure 1). First, we 

collected global load and VRE supply time series data, which we spatially aggregated according to the 

REMIND model regions (section 2.3). Second, we fed the data into the highly-resolved model DIMES to 

derive a comprehensive set of RLDCs (for a range of exogenous gross7 VRE shares and mixes) that 

include the impact of short-term storage (section 2.4). Third, we implemented the region-specific RLDCs 

into the REMIND model as approximate step functions that change endogenously with VRE mix and 

share (section 2.5). Section 2.6 offers a discussion of limitations of the method used and potential for 

further refinements (section 2.6). 

 

Figure 1 : The three key methodical steps comprise i) collecting global load and VRE supply data, ii) estimating the impact of 
short-term storage and iii) implementing region-specific RLDCs into the REMIND model. 

2.1. REMIND model 

This is a brief description. A more elaborate description can be found in the published model 

documentation [20]. See also applications in Ref. [21]–[23]. The energy-economy-climate model 

REMIND is a Ramsey-type general equilibrium growth model of the macro-economy in which inter-

                                                           
7
 « Gross » share refers to the ratio of potential annual VRE generation (i.e. including curtailment) and total annual 

load. 
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temporal global welfare is maximized, combined with a technology-rich representation of the energy 

system. It represents capacity stocks of more than 50 conventional and low-carbon energy conversion 

technologies, including 20 different renewable and non-renewable electricity generation technologies. 

REMIND accounts for relevant path-dependencies, such as the build-up of long-lived capital stocks, as 

well as learning-by-doing effects and inertias in the up-scaling of innovative technologies. REMIND 

operates in time-steps of five years for the period from 2005 to 2060, and ten years for the rest of the 

century.  

 

Figure 2: Regional definitions used in the REMIND model. 

In the REMIND model, the world is broken down into 11 regions (Figure 2): five individual countries 

(CHN - China, IND - India, JPN - Japan, USA - United States of America, and RUS - Russia) and six 

aggregated regions formed by the remaining countries (EUR - Europe, LAM - Latin America, AFR - Sub-

Saharan Africa excluding South Africa, MEA - Middle East / North Africa / Central Asia, OAS - other Asian 

countries mainly located in South East Asia, and ROW – the rest of the world including Canada, Australia, 

New Zealand, Norway, South Africa). 

The wide scope of global energy-economy-climate models such as the REMIND model limits their level 

of detail. The relatively coarse regional resolution comes with methodological challenges in particular 

with regard to power sector modelling, which we briefly describe here and discuss in more detail in the 

limitations section 2.6. 

Future research will likely collect, derive and employ better data, achieving a higher spatial 

differentiation when representing heterogeneous integration challenges and options. Our 

parameterization already shows substantial differences between most model regions, which is a 

substantial improvement over previous region-independent parameterizations. Even though some 

REMIND model regions are very large and consist of more than one country, they represent groups of 

countries that have economic, cultural and climatic similarities and are likely to improve their grid 

connection over time. Only for the two model regions OAS (other Asian countries) and ROW (rest of the 
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world) most countries do not share a border8 and thus will not be grid-connected in the future. For 

these regions, we use data from a similar country as a proxy (see section 2.3). 

Each REMIND region can only be represented by a single region-specific RLDC. Since substantial 

transmission grid expansion has been found to be a no-regret option for smoothing variability and thus 

reducing VRE integration challenges [24]–[27], we assume that over the next decades, transmission grids 

are expanded within each region, virtually making it a “copper plate”. Accordingly, we spatially 

aggregate the time series for wind, solar and load for each region to derive RLDCs. While this “copper 

plate” assumption is not too far from today’s state in countries of limited size (e.g., France, Spain, 

Germany), it requires substantial transmission grid expansion in larger regions, such as the EU, US, or 

China. 

REMIND represents grid costs in an aggregated way, as the spatial aggregation in the model rules out an 

explicit representation of individual transmission grid lines. Grid investments are accounted for via two 

generalized grid cost mechanisms: A first flat grid cost component reflects the costs of well-developed 

transmission and distribution grid infrastructure seen today e.g. in the US or the EU. This cost is 

calculated based on the total electricity demand, without differentiating from which source it is 

provided, and amounts to 25-30$/MWh9. On top of these general cost associated with all electricity use, 

we add a second grid cost component that only applies to electricity produced from VRE, and which 

represents an additional expansion of long-distance transmission grids within each region to better 

integrate VRE. For this, we use an approach presented in Ref. [28], with grid costs updated based on 

recent REMix runs for Europe [29], leading to average VRE grid cost markups of 6-23$/MWh. 

2.2. Scenario definition 

To analyze the deployment of VRE in REMIND, we use three scenarios: a scenario with no long-term 

climate mitigation policies (“Baseline”) and two scenarios with stringent climate policies, one with a 

wide range of technology options (“Tax30 scenario”) and one with limited CCS and nuclear deployment 

(“RE Tax30”). More specifically, the RE Tax30 scenario prohibits new CCS and nuclear power plants after 

2020 and analyzes the resulting effect on VRE deployment. 

For the two policy scenarios the model assumes a carbon tax of 30 $/tCO2 in 2020, increasing at 5% per 

year, implying a >66% chance of achieving the 2°C target. The relevance of the Tax30 scenarios does not 

rely on the global implementation of a high carbon tax until 2020. Instead, the carbon tax has the 

methodological purpose of deriving an optimal climate mitigation scenario in line with the 2°C target. 

Also, the carbon tax mimics a form of stringent global climate policy. While economic theory suggests 

that carbon pricing is the most efficient way of reaching ambitious climate targets, Bertram et al. [30] 

show that a mix of low-carbon support, regulation of fossil investments in combination with a low 

carbon price , can initiate a similar transformation of the global energy system at limited efficiency 

losses. 

                                                           
8
 Note that this is the case for any global modeling attempt. 

9
 All $ values are in US-$ for 2015. 
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2.3. Input data: Global load and VRE supply time series 

A region-specific model representation of integration challenges in a global model like REMIND requires 

regional data for a range of world regions. We implement region-specific RLDCs into the REMIND model 

to represent the temporal matching of load and VRE supply. For deriving these RLDCs (including the 

impact of storage), the DIMES model needs an input of three time series per region: load, wind power 

and solar PV power, each with hourly resolution. While VRE supply data is increasingly available for 

more and more world regions, load data is scarce, in particular for developing and emerging economies 

such as African countries, India, Brazil or China. 

The RLDC data (derived from hourly wind, solar and load data for the different world regions) as well as 

the region-specific time series for wind and solar are available in the supplementary material of this 

paper. In addition, we indicate the sources of the underlying original load time series. 

The load data are historical time series, mostly for one or more years, in hourly resolution. For the 

development of the RLDCs, we used these load profiles, thus implicitly assuming that they will retain 

their current shape for the full time horizon of the model. Estimating and incorporating future changes 

of temporal load profiles is a complex issue and beyond the scope of this paper. We discuss the 

potential impact of this simplification and directions for future refinements in the limitations section 2.6. 

Table 1 gives an overview on the load data and Table 2 on the VRE supply data. We derived region-

specific RLDC parametrizations for eight REMIND model regions (column 1) based on collected VRE 

supply and load time series with hourly resolution. Some regions’ load data time series needed to be 

approximated from data that only covers a part of the respective model region due to lacking load data. 

Latin America was parameterized on the basis of Brazilian load data only; Sub-Saharan Africa by 

aggregating country load data for Ivory Coast, Ghana, South Africa; load data for China by a reference 

load day; and the Middle East / North African / Central Asia model region by an aggregation of Algeria, 

Egypt, Israel, Jordan, Lebanon, Morocco, Syria and Tunisia. Three REMIND model regions have no 

individual parameterization due to lacking load data. They are approximated by the representations of 

related model regions (Europe is used as a proxy for Russia, India for Other Asia, USA for Rest Of the 

World ROW). 
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Table 1: Overview on the hourly time series data for load data, which was collected to parameterize RLDCs for different 
REMIND model regions. 

  

RLDC 
region 

used for 
REMIND 
model 
region 

Parameteriza-
tion based on 
data 
aggregated 
from these 
countries 

Data source Year Comment 

Lo
ad

 d
at

a 

USA USA, 
ROW 

USA EPRI 
(personal correspondence) 
 
aggregated from FERC data: 
http://www.ferc.gov/docs-
filing/forms/form-
714/data/form714-
database.zip 

2010   

EU EUR, 
RUS 

European 
countries 

German Aerospace Center 
(DLR) 
(personal correspondence) 
 
aggregated from ENTSO-E: 
https://www.entsoe.eu/data/
data-
portal/consumption/Pages/de
fault.aspx 

2006   

Middl
e East 
& 
North 
Africa 

MEA Algeria, Egypt, 
Israel, Jordan, 
Lebanon, 
Morocco, 
Syria, Tunisia 

German Aerospace Center 
(DLR) 
(personal correspondence) 
 
based on Ref. [31] 

2004-
2006 

For most 
countries, the full 
load curve was 
interpolated from 
a number of 
reference days 

China China China Energy & Resources Group - 
University of California, 
Berkeley 
(personal correspondence) 
 
Based on Ref. [32]–[34] 

2008 Consists of a 
reference day 
scaled to 
different heights 
for each month 
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Lo

ad
 d

at
a 

Latin 
America 

Latin 
America 

Brazil Operador Nacional do Sistema 
Elétrico (ONS) 
(personal correspondence) 

2009   

Sub-
Saharan 
Africa 

Sub-
Saharan 
Africa 

Ivory 
Coast, 
Ghana, 
South 
Africa, 
Middle 
East/North 
Africa 

IRENA 
(personal correspondence) 

2008 
(Ivory 
coast) 
 
2009 
(Ghana) 
 
2010 
(South 
Africa) 

To 
represent 
the load 
pattern of 
northern 
and eastern 
African 
countries,  
MENA time 
series 
contribute 
1/4th to 
the 
aggregation 

Japan Japan Japan METI 
(personal correspondence) 

2010/2011 Anomalous 
data for 
March 
2011 due 
to Great 
East Japan 
Earthquake 
was 
replaced by 
data from 
February 
2011 

India India, 
Other 
Asia 

India Central Electricity Authority (CEA) 
(personal correspondence) 
 
http://www.cea.nic.in/archives.html 

2010   
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Table 2 : Overview of the hourly time series data for VRE supply data, which was collected to parameterize RLDCs for 
different regions REMIND model. 

  

RLDC 
region 

used for 
REMIND 
model 
region 

Parameterization based on 
data aggregated from these 
countries 

Data source Year 

V
R

E 
su

p
p

ly
 d

at
a 

(w
in

d
 o

n
- 

an
d

 o
ff

sh
o

re
, s

o
la

r 
P

V
 a

n
d

 C
SP

) 

USA USA, 
ROW 

USA 

German Aerospace 
Center (DLR) 
(personal 
correspondence) 
 
Based on Ref. [35] 

Data of one 
representative 
year based on 
irradiation and 
wind speed 
data for 1984 - 
2005 

EU EUR, RUS European countries 

Middle 
East & 
North 
Africa 

MEA Algeria, Bahrain, Egypt, Iran, 
Iraq, Israel, Jordan, Kuwait, 
Lebanon, Libya, Morocco, 
Occupied Palestinian 
Territory, Oman, Qatar, Saudi 
Arabia, Sudan, Syrian Arab 
Republic, Tunisia, United Arab 
Emirates, Western Sahara, 
Yemen 

China China China 

Latin 
America 

Latin 
America 

All South American and 
Middle American countries 

Sub-
Saharan 
Africa 

Sub-
Saharan 
Africa 

All African countries not in 
Middle East & North Africa 

Japan Japan Japan 

India India, 
Other 
Asia 

India 

 

Global time series of hourly power generation with VRE technologies (open-area PV, CSP, onshore and 

offshore wind) are generated with the REMix Energy Data Analysis Tool. The data base comprises a time 

period from 1984 through 2005. For a detailed description of input data, methods and the tool itself see 

[35]. The hourly power generation potentials are analyzed in three steps: land use assessment, resource 

data analysis and application of a power plant model.  

The global land use assessment comprises the analysis of suitable areas at 300x300m resolution, 

employing the Global Land Cover database [36]. The following types of land use are considered: 

herbaceous or sparse vegetation, bare areas, and shrub land. These areas are reduced by glaciers, sand 
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dunes, saltpans, water-covered areas, protected areas, settlements and areas with a slope exceeding a 

technology-specific maximum.  

The resource data analysis uses data from [37], which are used to derive hourly global horizontal and 

beam normal irradiance values which are required as input into the PV and CSP power plant models. 

Wind speed data 50m above ground retrieved from [38] are converted to wind speed values at hub 

height and used as input for the wind turbine model. The power plant models define area-specific 

installable capacities, efficiencies of the energy conversion and, in case of CSP, efficiency of storage, 

availability, life times, as well as investment and operation costs. Maximum installable capacities in each 

suitable raster cell are calculated by multiplying its area with the area-specific installable capacity. This 

capacity value and the resource information are then used to calculate hourly maximum power output 

in a raster cell. 

2.4. Parameterizing the impact of short-term storage with the DIMES model 

Short-term storage is an important option for facilitating the integration of VRE, or equivalently 

increasing the economic value of VRE. However, explicitly accounting for storage and its detailed 

operation within the REMIND model would be highly challenging if possible at all, as it would require 

close to hourly temporal resolutions10. We estimate the role of storage with the separate DIMES model 

and derive an extensive set of RLDCs containing the impact of storage to parameterize the REMIND 

model. REMIND then accounts for the costs of storage capacity and the benefits from storage in terms 

of a less challenging RLDC. DIMES runs were conducted for gross wind and solar shares, each between 0 

and 120%11, and for eight out of eleven REMIND model regions12 resulting in 1352 model runs. 

The RLDC data derived for the different world regions is available in the supplementary material of this 

paper, thereby allowing other modelling teams to adopt this approach for their models, or to inform 

alternative approaches for representing variability. 

The Dispatch and Investment Model for Electricity Storage (DIMES) is numerically lean, allowing for a 

large number of model runs, e.g., for sampling a large parameter space, while representing the relevant 

details for parameterization of the REMIND model. It is a stylized numerical dispatch and investment 

model of the power sector that is not calibrated to a specific region, but can be fed with hourly VRE 

supply and load data from different regions. In a linear optimization it minimizes total costs of power 

supply (investment, operation & maintenance, and fuel costs) by determining investment (i.e. a green-

field approach) and dispatch of non-VRE power capacity as well as short-term storage capacity and 

                                                           
10

 In addition to price differentials (« spreads ») between times of high residual load and low residual load or 
overproduction, the economics of short-term storage is determined by the number of charge-discharge cycles it 
operates over the year. 
11

 Throughout the paper share of VRE is defined as generation share of total annual load. In the « gross  share » 
values, overproduced VRE generation from VRE supply exceeding load (negative part of RLDC) is also counted, so 
these values can become larger than 1. « Net share » values count only the VRE generation that can be used, and 
thus cannot be larger than 1. 
12

 As described in section 2.3, three REMIND model regions have no specific parameterization due to a lack of load 
data. They are approximated by the representations of related model regions (Europe is used as a proxy for Russia, 
India for Other Asia, USA for Rest Of the World). 
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reservoir size based on an evaluation of one year in hourly resolution. Investments are calculated based 

on annualized costs. All generation and storage technologies are represented by their specific techno-

economic parameters (e.g. efficiency, fixed and variable cost, emissions, life time) and their aggregated 

capacity, i.e., single plants and units are not resolved. The model does not resolve grid lines, but uses a 

copper plate assumption in accordance to the REMIND model (see last paragraph in section 2.1). The 

generic short-term storage in DIMES was parameterized based on the techno-economic properties of 

flow batteries expected for 2050 as seen in REMIND, [28]. Assumed capacity costs are 310$/kW, 

reservoir costs are 100$/kWh and round-trip efficiency is 76%. All DIMES runs assume a carbon price of 

150$/tCO2, which is in line with 2050 carbon prices in scenarios consistent with the 2°C target. 

Figure 3 illustrates a typical RLDC result derived for Europe by sorting the hourly dispatch results of 

DIMES. The LDC (load duration curve) changes to an RLDC with increasing VRE share (here shown: 80% 

PV and 20% wind power). Two RLDCs are shown: One without and one with short-term storage. The 

DIMES model endogenously decided on the cost-optimal amount of storage capacity to reduce 

integration challenges. Storage allows the use of parts of VRE generation that would be over-produced 

without storage. As a result, both curtailment and residual peak load decrease. 

To validate the one-node approach (no grid representation) of DIMES, we compare the DIMES RLDC 

results to the output of the REMix model. REMix is a highly sophisticated dispatch and investment model 

that applies more detail, such as a differentiation of 15 regions with specific load and VRE supply data 

([29], [39]). While REMix is useful as a validation for DIMES, it could not be used to parameterize all 

world regions, as REMix’s geographical coverage is limited to Europe. 

While the results were already quite similar in the basic version, we could improve the matching 

between DIMES and REMix by splitting the short-term storage in DIMES into two separate technologies 

with costs varied by ±20%, and allowing the model to use the storage technology with lower costs only 

for supplying the first 50% of peak load. This split is a simple representation of the fact that in a one-

node model, storage can be used to equilibrate any over/undersupply, while in a 15-node model with 

explicit grid costs, the marginal value of storage decreases with increasing storage deployment: the 

more storage is deployed, the more it could be used to equilibrate over/undersupply in different 

regions, which leads to increased transmission costs and losses. 

Figure 3 visualizes the general effect of storage on the RLDCs by comparing outputs derived from the 

DIMES model to those of the more detailed REMix model. We find that DIMES RLDCs including storage 

are in decent agreement with those derived from REMix. Due to the country heterogeneity in REMix, the 

REMix RLDCs are much smoother and do not show the steps visible in the DIMES RLDCs; however, 

residual peak load, curtailment, and the general shape of the RLDCs are in good agreement.  
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Figure 3: LDC and RLDCs with and without storage operation for DIMES and REMix for Europe. 

2.5. Implementing RLDCs in REMIND 

The core of the RLDC approach is a representation of RLDCs in the REMIND model. Different 

approximations of the RLDC shape and ways of implementation are suggested in [15]. We use a 

numerically lean step-wise approximation based on four rectangular “load bands”, which we term 

“peak-load band”, “higher mid-load band”, “lower mid-load band” and “base-load band”; as well as two 

additional variables for residual peak load (maximum residual load over one year) and curtailment. This 

allows for a fairly good approximation of RLDCs while the additional numerical complexity is still 

manageable. 

 

Figure 4: Sketch of the model approximation of RLDC at 0% VRE, i.e. load duration curve, (left) and an RLDC at about 40% VRE 
(right). Four rectangular “load bands” and the residual peak load endogenously change in response to wind and solar 
deployment. In addition, the negative part of the RLDC indicates VRE supply that exceeds demand. It is termed “curtailment” 
here and can be used as an input to storage. 
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Figure 4 illustrates the RLDC approximation. The four load bands are characterized by their full-load 

hours (FLH) and capacity factor (determining the load band widths), which are fixed. By contrast, load 

band heights change depending on the gross share and mix of VRE. Without VRE generation, the heights 

of the load bands are fitted to the region-specific LDC (Figure 4, left). With increasing VRE share, the 

height of each load band changes (blue arrows in Figure 4, right). Also the residual peak load 𝐻𝑃, which 

determines the required non-VRE capacity (see the capacity equation (6) in Appendix A.2), decreases 

with increasing VRE share. 

The changing shape of the RLDCs is parameterized in REMIND in two steps: 

1) Every RLDC (output from the DIMES model) is fitted by the four load bands such that the deviation 

between the load band step function and the actual RLDC data is minimized. For each region, gross 

wind and solar shares are varied from 0% to 120% in 10% steps, which results in 13² = 169 

combinations. The fitting procedure results in six parameters characterizing the RLDC shape: the 

height of each of the four rectangular load bands 𝐻1..4, the residual peak load 𝐻𝑃 and curtailment 

rate 𝛾 (curtailed share of gross VRE generation). 

2) To implement the changing RLDC shape, two-dimensional functions depending on gross wind and 

PV share are derived for each of the six parameters and each region. Each function is a polynomial 

of the two variables wind and solar share with polynomial coefficients derived from fitting the 169 

data points that span the range of wind and solar power (see for example Figure 5). 

All polynomial coefficients are given in Table 5 in the Appendix A.1 and the core equations of the 

implementation are explained in A.2. 

 

Figure 5: 2-dimensional fit of residual peak load as share of peak demand (left) and curtailment as share of total annual 
demand (right) dependent on the gross share of PV and wind for the EU. The results from individual DIMES runs are 
represented by blue crosses, the colored surface represents the polynomial fit. To improve visibility, the share of PV 
increases towards the viewer in the left figure, while it increases away from the viewer in the right figure. The thin black 
lines on the coloured surface represent the 10%-steps in PV and wind share, so that at each crossing of two black lines, one 
DIMES run yields an RLDC, from wich a value for the analyzed variable is extracted. In case of a perfect fit of the 2D-function 
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to the DIMES results, each blue cross would be partially visible and situated at the crossing of two black lines. If the blue 
cross is fully visible, the DIMES value is higher than the 2D-fit, and vice versa.    

As an example, Figure 5 shows the parameterizing functions for the residual peak load (left) and 

curtailment (right) parameters for a range of gross wind and solar shares for Europe. The comparison of 

the third-order polynomial fit (colored surface) to the original data (blue crosses) shows good 

agreement. The blue crosses should ideally match the crosses of the lines. Increasing the polynomial 

degree of the fitting function would increase both fit accuracy and model complexity. Considering this 

tradeoff we chose a third-order polynomial with mixed terms. All fits used for REMIND have a coefficient 

of determination R2 better than 0.83, with all load band fits having an R2 of 0.96 or better. 

As a result of the new implementation, the RLDC approach allows the REMIND model to more accurately 

determine the cost-optimal deployment of both VRE plants and non-VRE plants under consideration of 

their most important interactions. Wind and solar plants are endogenously deployed with full 

anticipation of the challenging VRE impacts captured in RLDCs, i.e., a rather small VRE capacity credit, 

the reduced utilization of dispatchable plants and over-produced VRE generation, which might need to 

be curtailed. It therefore also accounts for the diminishing marginal value of VRE generators due to self-

correlation within VRE generation [11], [13]. Analogously, when investing in dispatchable power plants, 

the model considers the long-term capacity requirements for covering residual load - from base load to 

peak load. This includes the long-term reduction of annual FLH (i.e. capacity factors) over the lifetime of 

dispatchable plants due to increasing VRE share, which typically induces a shift from base load plants to 

peak load plants. 

Short and long-term storage technologies are modelled differently in the RLDC implementation 

presented here. The impact of short-term storage is already accounted for in the parameterization of 

the RLDCs based on DIMES, because its representation requires a much higher temporal resolution of 

close to hourly detail in combination with full information on temporal ordering, which is both not 

contained in the RLDCs anymore. By contrast, long-term storage is endogenously represented in the 

REMIND model as described in Ref. [15]. Overproduced VRE generation can be transformed into 

hydrogen via electrolysis. Hydrogen can be directly used, e.g., in the transport sector, or used to 

generate power in times of higher demand via hydrogen turbines or co-firing of CSP plants. The key 

determinant for the economic efficiency (and profitability) of installing electrolysis capacity is the 

amount of available overproduction and the resulting capacity factor of the electrolysis. Both depend on 

VRE share and mix and are captured in the negative part of the RLDC. The RLDC representation allows 

REMIND to endogenously choose the optimal amount of long-term storage. 

2.6. Limitations and future refinements 

Like any reduced-form representation, the RLDC approach has shortcomings, which we discuss in the 

following paragraphs. Note that some of these shortcomings apply to long-term models in general and 

point to promising fields of further methodological research. 

By using duration curves, information about the temporal sequence for generation and demand is lost. 

This hinders a direct and accurate representation of some aspects that depend on short-term dynamics 
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such as the flexibility13 of non-VRE generation. In general, any long-term energy model without explicit 

representations of sub-hourly time-scales cannot guarantee that there is sufficient flexibility to reliably 

balance supply and demand. Other highly-resolved production cost models are designed for this 

purpose, which can validate the results of a long-term model. This has been done for long-term energy 

models that represent single countries (see for example Ref. [40]–[42]). Doing so for a global model with 

multiple regions requires significant processing effort (requiring a model calibrated for each region), 

which is why, to our knowledge, such a global validation has never been done. However, we believe that 

also without bottom-up validation the resulting error is small for global models that use the presented 

RLDC approach for three reasons: 

1) Accounting for RLDCs alone already incentivizes investments in more flexible thermal plants. 

The reduced utilization of thermal power plants induces a shift towards less capital-intensive 

intermediate and peak load power plants, which are generally more flexible than base-load 

plants. 

2) The presented approach requires the installation of short-term storage in the form of flow 

batteries at higher VRE shares. Such batteries are very flexible and could partially compensate 

for limited flexibility in the residual system. 

3) Many studies show that the costs for providing additional flexibility with increasing VRE shares 

are low, i.e., less than 6 EUR per MWh of VRE (<10% of VRE generation costs) at VRE shares of 

up to 40% ([12], [13], [43]), compared to other integration cost components. The substantial 

uncertainties of future technology costs are much larger than these additional costs, which will 

therefore only have a minor effect on the findings derived from long-term scenarios. 

Another short-term aspect in time scales of seconds and even milliseconds is not represented in the 

RLDC approach. VRE generators are connected to the grid in a non-synchronous way, in contrast to 

conventional generators, where the mechanical rotation of the turbine is coupled to the system’s 

electrical frequency. This decreases power system’s inertia and thus could endanger power system’s 

stability in case of high instantaneous VRE penetrations. A study for the 2020 Irish power system 

estimated a restriction on the instantaneous system non-synchronous penetration (SNSP, the sum of 

non-synchronous generation sources like wind or PV) of 70% in case no alternative inertia is added to 

the system such as emulated inertia from wind turbines [44]. Since 2011, Eirgrid is working on increasing 

the SNSP limit from the current value of 50% to 75% in 2020 [45]. As advanced VRE generators and 

other technologies such as fly-wheels or batteries increasingly contribute to frequency control [46], we 

expect that the limit to instantaneous VRE penetration will be pushed even higher in future power 

systems. Hence, we expect that neglecting this issue does not affect the validity of the RLDC approach. 

To our knowledge, this paper is the first to collect and implement VRE supply and load data at high 

temporal resolution for most world regions. While this is a substantial advance from previous model 

analyses, future refinements need to be made to improve this parameterization: 

                                                           
13

 Flexibility refers to the ability of thermal power plants to adjust their generation on short notice over a wide 
range. Aspects of flexibility are ramping and cycling constraints, minimum electric load, minimum heat load (in 
case of CHP), minimum up and down times, part-load efficiency, operating reserve requirements, and 
corresponding costs. 
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1) Most importantly, better and more extensive load and VRE data is required for many world 

regions. Using synchronous load and VRE data from several years would improve the robustness 

of the RLDC parameterization, even though the deviations between RLDCs from different years 

with the same wind and solar share are small. In addition, due to the limited amount of load 

data time series currently available, we had to use load time series for individual sub-regions or 

countries as proxy for a whole region, or, in the case of China, only one representative load day. 

2) The RLDC parameterization used in this paper is based on current demand profiles, while the 

scenarios cover the whole century. The approach could be improved by accounting for future 

changes in demand profiles, e.g. due to economic development and structural changes in 

electricity demand. This is not an inherent limitation of the RLDC approach, but rather points to 

a more fundamental challenge of deriving appropriate projections for input parameters in long-

term scenario analyses. We discuss the potential impact of the simplification and directions for 

future refinements. 

There are several drivers that change demand profiles and thus affect their matching with VRE 

supply. The increasing deployment of cooling systems such as air conditioning, in particular in 

hot developing and emerging countries, would increase the matching of load and solar, which 

would increase the role of solar PV. However, at high VRE shares the self-correlation of VRE 

generators, i.e. the matching of VRE with residual load, becomes more important than the 

matching of VRE supply with load. 

Electrification of the heat and power system is a pillar of many climate mitigation scenarios. The 

resulting changes to demand profiles highly depend on behavioral aspects such as battery 

charging patterns of electric vehicles. Regulatory, market design and technical aspects influence 

the flexibility14 of the additional demand (demand response). Highly optimistic assumptions on 

the flexibility of demand can significantly ease matching demand with VRE supply and ease VRE 

integration [47], while assuming simple, uncontrolled demand profiles of e.g. heat pumps and 

electric cars tends to increase demand in peak load times when power capacity is already scarce 

(as estimated for UK, Germany, and Denmark in [48]–[50]) which in turn complicates VRE 

integration. 

While most literature points to the need for and high potential of demand response, this 

remains a complex and uncertain issue. We suggest that our approach of using historic demand 

profiles for the future is a rather conservative assumption as it underestimates the potential for 

demand response especially in the far future. Conducting sensitivity studies on future demand 

profiles and their flexibility is a promising direction for methodological refinement of the RLDC 

approach and for further research in general. Ideally, modelled load profiles should change 

endogenously depending on the sources of electricity demand; yet this level of detail is hard to 

achieve in global energy-economy-climate models. As an alternative, demand response can be 

parameterized exogenously by a highly-resolved model for a range of VRE shares and mixes, 

similar to the one used for short-term storage in this study. 

                                                           
14

 Flexibility here refers to both the share of demand that can be shifted in time and the duration of these shifts. 
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Another important methodological challenge that all global energy-economy-climate models have in 

common is their high spatial aggregation e.g. the REMIND model divides the world into 11 large regions. 

In the following we discuss resulting limitations with respect to i) finding a representative RLDC for each 

region and ii) considering grid investments in the model. 

1) We spatially aggregate the time series for wind, solar and load for each model region to derive 

region-specific RLDCs and hereby assume perfect transmission within each region. Such a 

copper-plate assumption is an optimistic assumption for most regions in the near future, and 

also in the long-term future for large regions with weak current infrastructure such as Sub-

Saharan Africa. On the other hand, we argue that some additional aspects of our 

implementation, the scenario design and the role of grid expansion prevent an overly optimistic 

bias in our scenario results and on balance create a reasonable set of assumptions. 

Becker et al. [25] analyze the effect of transmission grid expansion for increased wind and solar 

integration in the EU. They find that even a four-fold increase of todays net transfer capacities is 

sufficient to reap 90% of the maximum integration benefits that would be achievable through a 

copper-plate EU. This result suggests that the copper-plate assumption used in models for 

simplicity reasons does not need to be understood as a perfect grid-interconnection in reality, 

but as a proxy for ambitious transmission grid expansion. 

Such transmission grid expansion has been found to be a no-regret option for smoothing 

variability and thus reducing VRE integration challenges [24]–[27], making it a likely part of cost-

optimal climate mitigation scenarios. The costs for such a transmission expansion are much 

smaller than the costs for transforming the generation part of the energy system in a low-

carbon scenario ([27], [41]). This is also true in terms of long-term total system costs15 and thus 

transmission expansion seems to be a no-regret option for regions beyond those that already 

have a well-developed transmission infrastructure. 

Different world regions clearly differ in the rate at which transmission grid infrastructure can be 

expected to be built up and then match our pooling assumption for load and VRE supply. For the 

US and EU it seems likely that transmission grids will be significantly expanded within the next 2-

3 decades in accordance with increasing VRE generation. NREL finds that new transmission is 

substantial for an 80%-renewable scenario of the US power sector, but estimated transmission 

investments are in line with recent historical trends [41]. For regions with a weak current 

infrastructure and higher institutional barriers to grid extension, an extensive interconnection 

will take longer, probably until 2050, and thus assuming such an interconnection already in the 

first half of the century is optimistic and neglects some sub-regional diversity in integration 

challenges. However, we suggest that the resulting bias of scenario results is rather small 

because i) integration challenges are small at rather moderate VRE shares until 2050 and ii) the 

REMIND model aims at analyzing cost-optimal energy system transitions until the end of the 

century. In addition, institutional barriers that slow down grid expansion tend to be neglected in 

the global models that focus on a cost-efficient transition towards a low-carbon energy supply. 

                                                           
15

 Long-term total system costs correspond to a green-field approach without existing generation or transmission 
capacities. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

19 
 

The optimistic assumptions on pooling are to some extent compensated by the above-

mentioned conservative assumptions on load flexibility. In addition, we do not always aggregate 

load data from the entire world region (only for EU, USA, India) and instead use a subset of 

countries and subregions due to a lack of data. As a result load variability is not smoothed as 

much as if load data from all sub-regions were available and pooled. 

Ideally, RLDCs would be parameterized with detailed models for each world region that take 

into account the gradual expansion of transmission grids. This would add another dimension 

(state of grid infrastructure) to the extensive set of RLDCs and would thus increase the 

numerical requirements. Future refinements would need to find a stylized parameterization of 

the effect of grid infrastructure on RLDCs. 

2) In section 2.1 we describe how VRE-related grid costs are represented in REMIND in an 

aggregated way through generalized transmission cost markups on VRE electricity. We use an 

approach presented in Ref. [28], with grid costs updated based on recent REMix runs for Europe 

[29] (6-11$/MWh VRE). While these detailed calculations for cost-optimal grid deployment 

should ideally be performed for each region, thus far there are no electricity sector models 

available with sufficient detail and input data for all the different world regions. While Europe 

with its strong North-South-duality provides a cost estimate for significant transmission grid 

requirements, we assumed double the European specific grid costs, to 13-23 $/MWh VRE, as a 

conservative estimate for larger world regions like Sub-Saharan Africa, China, or Latin America. 

In addition, we test the impact of these grid cost assumptions on the deployment of VRE by 

conducting a sensitivity analysis where we increase/decrease all region-specific VRE-related grid 

costs by a common factor. Doubling the grid costs reduces the contribution of VRE to total 

electricity production (2010-2100) by 13%, while halving grid costs increases it by 8% (Figure 16 

in appendix A.3). 

Beyond the pure economic costs, which are represented in the model, grid expansion could also 

meet non-monetary barriers such as local resistance and lack of institutions, which are very 

challenging to represent in highly aggregated energy-economy-climate models.   

In addition, the REMIND model does not represent electricity trade between the 11 world 

regions. The main reason is that the chronological order of load and VRE supply is lost in the 

RLDCs, and consequently the RLDCs of connected regions are not synchronous in time, which 

would be required for representing power transmission. The RLDC approach is most suitable to 

represent a single region or regions that do not transfer significant amounts of electricity 

between them. This is the case for most global long-term models, which typically represent the 

world in aggregated macro-regions that hardly trade electricity. 

3. Results 
This section has two parts. In section 3.1 we discuss how integration challenges, i.e. the matching of VRE 

supply with load, differ (and do not differ) between regions, VRE mixes and shares. We show regional 

RLDCs that were used to parameterize REMIND and discuss the impact of short-term storage. In section 

3.2 we show REMIND scenario results based on the implemented RLDC approach and relate the results 
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to the region-specific integration challenges discussed in 3.1. For all results, we focus on Europe, USA 

and (Sub-Saharan) Africa because they show a range of integration challenges as they are characterized 

by different seasonal and diurnal matching properties of wind and solar power with load. 

3.1. Regional VRE integration challenges captured in RLDCs 

This section shows a range of RLDCs for different regions and VRE technologies, with and without 

diurnal storage. The RDLCs are used to parameterize the REMIND model. Hence, region-specific 

integration challenges and their mitigation via storage are considered in the REMIND scenario results 

shown in section 3.2. 

Figure 6 illustrates the underlying time series data that show matching patterns of load and VRE supply 

that to a large extent shape RLDCs. The time series of load, wind and solar illustrate both seasonal 

matching (left) – based on weekly average values for one year – and diurnal matching (right) – based on 

average days in hourly resolution. The average days are derived for the season in which load shows its 

annual peak for each focus region, e.g. the summer season in the US because load is higher during the 

summer there. The solid line represents an average day and the 15th and 85th percentiles are shown with 

dotted lines. The three focus regions Europe, USA and Africa, show a range of distinct characteristic 

seasonal and diurnal matching properties, which shape the RLDCs and influence the role of short-term 

storage. 

For the US, the annual demand peak in summer coincides with the annual solar peak, and during this 

peak season, the diurnal demand curve coincides with the diurnal solar curve. For the EU, annual 

demand peak occurs in winter, where wind also peaks. However, wind does not have a strong diurnal 

peak in the EU, so the diurnal matching between wind and demand is limited. In Africa, flat load 

coincides well with flat solar over the year, but the diurnal demand curve is also quite flat and peaks in 

the evening, thus being not very well correlated with solar. 
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Figure 6: Annual time series of weekly averages that illustrate the seasonal correlation of load, wind and solar (left) and 
diurnal time series (right) that show the diurnal matching of load, wind and solar PV for Europe, USA and Africa. The dotted 
lines (right) show the 15

th
 and 85

th
 percentiles for each average day time series. 
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Comparing regional RLDCs for wind and solar PV 

Figure 7 shows RLDCs for all six combinations of the focus regions (Europe, USA, and Africa) and VRE 

technology (wind and solar PV) for increasing gross shares (0% - 100%). These curves do not yet account 

for the impact of storage, which is shown later in Figure 8. 

The RLDCs confirm the well-established result that VRE integration challenges (as described in the 

introduction) increase with increasing VRE shares ([10], [12], [13], [43]). The VRE capacity credit is low or 

moderate at small VRE shares but vanishes with increasing shares. The FLH of non-VRE plants decrease 

and overproduction (negative part of the RLDC) increases at high VRE shares. As a consequence, even at 

very high deployment of VRE generators there is a part of electricity demand that cannot be directly met 

by VRE. It can only be covered by conventional thermal capacity, non-variable renewables (e.g. 

hydroelectric power) or through a temporal shift of either load (via demand-side management) or over-

produced VRE (via storage). 

Although the overall character of integration challenges is similar, there are some noticeable differences 

between wind (Figure 7 left) and solar PV (Figure 7 right). Increasing solar PV above 20%-30% creates a 

kink in the RLDCs around hour 4500 – a bit more than half of the year’s hours. Additional solar 

generation beyond this threshold does not contribute to peak or intermediate load, but almost 

exclusively decreases the RLDC to the right of the kink such that at high shares most additional 

generation is over-produced. The reason is the regular day-night cycle of solar PV generation, i.e., the 

kink separates sun-intensive hours during daytime (right side of RLDC at high PV shares) from hours with 

little or no sun in the evening and at nighttime (left side of RLDC at high PV shares). Wind RLDCs do not 

show a kink, instead, increasing shares tend to gradually tilt RLDCs. This is because wind generation 

hardly follows a regular pattern (Figure 6, right). It is very stochastic in the sense that the distance 

between the 15th and 85th percentile of the distribution of wind power in each hour of a day is of 

comparable size to the mean value, and much larger than the same percentile range of solar power or 

load. 
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Figure 7: RLDCs for increasing gross shares of wind (left) and solar PV generation (right) for three world regions: Europe 

(above), USA (middle) and Africa (below). 

While at high VRE shares (above 20%) RLDCs mainly differ between wind and solar PV, the regional 

differences become increasingly important at VRE shares below 20% and if storage is considered (later 

in this section). The reason is that with increasing VRE shares the shape of the RLDC is increasingly 

determined by the correlation of additional VRE generation with existing VRE generation (auto-

correlation) and to a decreasing extent by the regional specific matching with load. 

Without storage, RLDCs show the following regional differences for load, wind and solar PV: 

 Load: Without VRE, the regional LDCs (highest curve) reflect the characteristics of the annual 

load time series shown in Figure 6, left: The African LDC is quite flat, while US and European load 

show a stronger variation between times with high and low load, indicating stronger diurnal and 

seasonal cycles. 

 Wind: RLDCs for wind power in Africa show the highest reduction of capacity requirements and 

smallest curtailment with increasing wind shares, mainly because its data is based on pooling 

across a large and geographically diverse area. The USA RLDCs show the highest integration 

challenges for wind due to the diurnal anti-correlation between wind and load, while those of 
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the Europe are in a middle range. More specifically, from 0-20% wind share in the EU, wind 

power acts like a flat band that evenly reduces residual load at all times, which is based on 

assuming significant transmission grid interconnection. 

 Solar PV: Significant regional RLDC differences occur for solar PV shares below 20%. For the US, 

solar PV contributes to peak load and thus reduces requirements for non-VRE capacity due to 

the good matching of load and solar peaks on both seasonal and diurnal scales (Figure 6). By 

contrast, Europe and Africa both show a low solar capacity credit, because of the bad diurnal 

load-supply matching in European winters, and throughout the year in Africa. Instead, solar PV 

contributes to intermediate load in both regions, because the mid-day peak, which is lower than 

the evening peak, can be met by the diurnal solar peak. 

The impact of storage on the RLDCs 

Figure 8 shows RLDCs for increasing solar shares that include the impact of short-term storage based on 

the DIMES model. We only discuss results for solar PV here, because we find, based on DIMES, that 

short-term storage capacity hardly contributes to integrating wind power deployment if regional 

transmission grid expansion is assumed. This is confirmed by detailed analyses of the REMix model for 

Europe: long-distance transmission grid extensions are more cost-efficient than building short-term 

storage for integrating wind power [29]. Short-term fluctuations of wind power are smoothed out if 

large spatial areas are grid-connected, while the lack of regular diurnal wind patterns limits the role of 

short-term storage. The DIMES model further shows that there is little short-term storage in mixed 

wind-solar scenarios, because wind power decreases the regular diurnal pattern of load. In cases of high 

VRE shares with a large contribution from wind power, other types of storage with lower reservoir costs 

that operate on longer time scales, i.e. seasonal storage, might be more beneficial. The REMIND model 

contains a representation of long-term storage via electrolysis following the approach of Ref. [15]. 

The discrete plateaus of residual load in Figure 8 are carved out by the operation of storage, which is 

optimized in the DIMES model such that it minimizes total system costs. Each technology in the mix of 

non-VRE technologies, such as coal power plants or a gas combined-cycle plant, is most competitive to 

operate at a specific number of annual FLH (corresponding to a specific width of the RLDC). Storage 

capacity shifts electricity such that plateaus emerge, which separate load bands with a specific width 

(number of annual FLH) that are covered by respective non-VRE capacities. In the real world, two 

aspects would reduce the pronounced plateaus and result in smoother RLDCs. First, the analysis 

neglects some heterogeneity of power plants of the same power plant type due to different designs, 

build years and operation styles. Second, a detailed representation of transmission grids and the spatial 

distribution of storage units would account for the real-world tradeoff of transmission losses, when 

transmitting power to and from storage units, and the benefits of storing. 

Short-term storage significantly reduces solar PV integration challenges, which can be seen when 

comparing Figure 8 with solar RLDCs without storage (Figure 7, right). The combination of PV with short-

term storage contributes to meeting peak demand, accordingly the peak of the residual load decreases. 

In addition, overproduction is significantly reduced. In a first approximation, storage tends to shift 

electricity such that the resulting solar RLDCs become similar to those of wind. Integration challenges 

and resulting integration costs become roughly comparable between wind and solar-with-storage 
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scenarios. Hence, the cost-efficient mix of wind and solar PV is roughly determined by a simple 

comparison of levelized costs of electricity (including storage costs for solar PV). Without considering 

short-term storage, models-based analyses might underestimate the economic potential of solar PV. 

 

Figure 8: RLDCs for increasing solar shares that include the impact of short-term storage estimated with the DIMES model. 
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The role of short-term storage depends on both diurnal and seasonal matching of solar PV and load. 

Short-term storage in particular is beneficial because it distributes mid-day solar power over the day to 

better match load. In regions with an evening load peak like Europe and Africa, this means bridging the 

diurnal solar-load gap. In addition, the extent to which integration challenges can be mitigated by short-

term storage depends on the seasonal matching of solar with load. For Europe short-term storage at 

high PV shares (~50%) is less beneficial than for Africa or the US because short-term storage cannot 

bridge the seasonal mismatch of European load and solar supply (Figure 8). Integration challenges can 

only be reduced further by long-term storage to shift electricity in seasonal scales. 

Short-term storage has the highest potential of mitigating integration challenges in regions with a 

diurnal solar-load mismatch and a good seasonal matching, as is the case for Africa. Even though solar 

RLDCs without storage for Europe and Africa look very similar, with storage the picture changes such 

that integration challenges are much smaller in Africa. By contrast, for the US, storage has only a limited 

impact on solar RLDCs due to a fairly good diurnal matching during peak season even without storage. 

At low to moderate solar shares (<= 40%), the RLDCs hardly change because the diurnal solar peak 

coincides with load. 

To conclude, these results indicate that determining the optimal expansion of solar PV requires a model 

representation of both storage (short-term and long-term) and region-specific matching properties. 

With short-term storage, regional differences in the RLDCs and corresponding integration challenges can 

increase. The seasonal correlation of VRE supply with load determines the potential role of VRE, and 

diurnal correlations determine if short-term storage is needed to harness this potential. 

Curtailment and storage needs across regions 

Beyond the detailed analysis of individual RLDCs, it is also instructive to look at aggregated information 

from the large number of DIMES runs. In Table 3, for each region and gross VRE-share, we show 

curtailment values averaged across scenarios with different mixes of wind and PV given the fixed gross 

VRE share. 

We find that under the assumptions of region-spanning transmission grids and sufficient flexible non-

VRE plants, all eight analyzed world regions reach VRE shares of 40% with less than 4% curtailment, and 

all regions (except for India and Japan) reach VRE shares of 80% with less than 13% curtailment. Since 

these values are averages across all scenarios for a given VRE share, there are combinations of wind and 

PV that lead to higher curtailment and other combinations that lead to lower curtailment. Note that 

real-world curtailment rates are likely to be higher if VRE generators are deployed at a high rate (~30 

percentage points per decade) and if the power system lags in adjusting to the new circumstances, e.g., 

by expanding transmission lines or by making dispatchable generation plants more flexible. 
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Table 3: Average cost-optimal curtailment (measured as share of gross VRE generation) from DIMES scenarios with storage, 
for all regions and VRE shares between 0-120%. Each VRE share row contains information from several scenarios, in which 
the mix of wind and PV was varied in steps of 10 percentage points. Accordingly, the curtailment value reported for 20%VRE 
is the average of the curtailment values from the 0%wind/20%PV, the 10%wind/10%PV and the 0%wind/20%PV scenario. 

Curtailment 
[share of VRE] 

Region 

AFR CHN EUR IND JPN LAM MEA USA 

gr
o

ss
 V

R
E 

sh
ar

e
 

0% 0% 0% 0% 0% 0% 0% 0% 0% 

10% 1% 0% 0% 0% 0% 0% 1% 0% 

20% 1% 0% 0% 0% 0% 0% 1% 0% 

30% 1% 0% 0% 0% 1% 0% 1% 0% 

40% 1% 1% 1% 2% 3% 2% 1% 1% 

50% 2% 3% 3% 5% 5% 4% 2% 3% 

60% 4% 5% 4% 9% 8% 6% 4% 5% 

70% 7% 8% 7% 13% 11% 9% 6% 7% 

80% 10% 12% 10% 17% 15% 12% 9% 10% 

90% 14% 16% 14% 21% 19% 15% 13% 14% 

100% 18% 19% 18% 24% 23% 19% 18% 18% 

110% 23% 23% 23% 28% 27% 22% 23% 22% 

120% 28% 27% 27% 31% 31% 26% 28% 26% 

 

Table 4: Average cost-optimal short-term storage capacity (measured in percent of peak load) from DIMES scenarios with 
storage, for all regions and VRE shares between 0-120%. 

Storage 
capacity 
[% of peak load] 

Region 

AFR CHN EUR IND JPN LAM MEA USA 

gr
o

ss
 V

R
E 

sh
ar

e
 

0% 0% 1% 2% 2% 1% 1% 0% 1% 

10% 1% 3% 2% 2% 3% 1% 2% 1% 

20% 2% 5% 2% 4% 4% 1% 3% 3% 

30% 3% 6% 4% 5% 7% 2% 4% 4% 

40% 6% 9% 7% 10% 10% 5% 7% 6% 

50% 14% 16% 13% 18% 16% 13% 13% 11% 

60% 22% 24% 20% 25% 24% 23% 21% 19% 

70% 28% 30% 27% 29% 30% 29% 27% 25% 

80% 35% 34% 31% 34% 34% 35% 31% 29% 

90% 42% 37% 34% 41% 36% 41% 35% 32% 

100% 47% 42% 35% 46% 38% 47% 36% 34% 

110% 49% 46% 36% 50% 40% 51% 38% 36% 

120% 46% 48% 38% 54% 43% 54% 39% 37% 
 

In Table 4, we present short-term storage capacities from the DIMES optimization. We see that in most 

regions, storage capacities up to 2% of peak load are cost-efficient even without any VRE. As VRE shares 

increase, storage capacities are deployed more, reaching on average 5-10% of peak load at 40% VRE. At 

80% VRE share, the average installed storage capacity increases to 29-35% of peak load. As discussed 

above, the deployment of storage strongly depends on the share of PV in the system. Accordingly, the 

average values in the table mask that at 80% VRE share, storage capacity in wind-based scenarios 
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amounts to only 2-11% of peak load, while in PV-based scenarios it amounts to an impressive 50-74% of 

peak load. 

3.2. Impacts of the representation of VRE integration on REMIND results 

In the following, we will discuss a cost-optimal electricity sector transformation pathway, and the extent 

to which wind and solar technologies contribute to it. We also analyze how regional differences in 

technology deployment can be explained by the regional correlation of wind, solar and load as 

represented in the RLDCs. 

Figure 9 shows global electricity production over the next century for the Tax30 scenario with stringent 

climate policies (30 $/tCO2 tax in 2020, increasing at 5% per year, implying a >66% chance of achieving 

the 2°C target, more in section 2.2). 

 

Figure 9: Global electricity production in the Tax30 scenario. Black diamonds represent the total demand (including the 

electricity used for hydrogen production), with anything plotted above being curtailed. 

In the Tax30 scenario the electricity sector undergoes drastic changes: it transforms from a system 

based on fossil fuels to a fully decarbonized power system mostly based on renewable energy. Under 

our default assumptions, wind and solar are the backbone of the electricity system, with only limited 

contributions from hydro, nuclear, biomass, and hydrogen turbines. On a global scale, wind and solar 

together supply more than 70% of total electricity demand from 2070 onwards in this scenario, and 59% 

of the total cumulated 2010-2100 electricity demand. 

VRE deployment has distinct regional patterns (see Figure 10). While the near-term deployment of new 

capacities in the EU has a strong focus on wind, the US deploys mostly PV over the next decades. In the 

long run, the development becomes similar again, with both regions deploying a mix of wind and solar, 

and the US also relying on concentrating solar power. Sub-Saharan Africa relies strongly on solar, with 

PV and CSP accounting for more than 50% of all electricity generation from 2060 onwards. 

Global  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

29 
 

 

 

 

Figure 10: Regional electricity production in the Tax30 scenario for EU (left), US (middle) and Africa (right). Black diamonds 
represent the total demand (including the electricity used for hydrogen production), with anything plotted above being 
curtailed. 

These regional differences can be explained with the regional specificities of the correlation of wind, 

solar, and load that we discussed above. In the US, the daily load profile in the peak season is strongly 

correlated with PV and thus the initial 20% of PV contribute strongly to reducing peak load even without 

short-term storage. As a consequence, PV generation can be integrated at low integration costs or 

equivalently at a high economic value. Accordingly, with the price reductions seen over the last years, 

PV is competitive against wind, whose generation contributes less to the more valuable peak and higher 

mid-load bands and more to the lower mid-load and baseload bands. In contrast, the daily load profile in 

the peak season in the EU is not well correlated with PV, so PV does not contribute to valuable peak load 

but rather mostly to base load. Wind, on the other hand, supplies a flat band in the EU for the first 20% 

contribution, and thereby yields a higher value per produced kWh.  

As the VRE share increases and some short-term storage is built, the daily profile becomes less 

important, while the seasonal matching between wind, solar and load becomes more relevant. If wind 

and solar are seasonally anti-correlated, as is the case in both the US and the EU (see Figure 6), then the 

deployment of the complementary VRE technologies can improve the seasonal matching between load 

and VRE. Accordingly, both US and the EU tend towards a relatively even mix of solar and wind. In 

contrast, both solar PV and load are quite flat throughout the year in sub-Saharan Africa, so not much 

would be gained in terms of matching by adding wind in this case. 

To better understand how such a system would operate, it is instructive to look at an illustrative 

example of how the resulting RLDC is met by power plants. Figure 11 shows the endogenous model 

RLDC for the US in 2050, for the full-technology Tax30 scenario (left) and the RE Tax30 scenario, which 

has the same carbon tax but does not allow deployment of nuclear and CCS in the electricity sector after 

2020 (right).  

EU  US  Africa  
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Figure 11: Model-endogenous RLDCs for USA, 2050. Left: Tax30 scenario. Right: RE Tax30 scenario. The blue dashed line 

shows the residual load bands that need to be filled by dispatchable technologies, while the black dashed line represents the 

load bands without any VRE (LDC). The area between these two lines is the electricity supplied by wind and PV, here colored 

in beige, with exact shares given in the text box. Load is normalized to peak demand at 0% VRE. The model formulation 

requires a reserve margin of 30% on top of the peak demand as calculated from the RLDC, and assumes the plants used to 

cover this peak demand plus reserve margin run 1% of the year. The red bar at the top left (counting down from the 1.3 

value of peak demand + reserve margin at 0% VRE) displays the size of the installed short-term storage capacity. 

In the displayed snapshot for the US in 2050 in the Tax30 scenario (Figure 11, left), wind and solar 

contribute to about 47% of total electricity demand, with short-term storage accounting for 5% of peak 

demand. The RLDC is reduced accordingly and changes shape: The baseload band decreases from ~60% 

of peak demand in a system without any VRE to 25%, the lower midload band roughly doubles, the 

upper midload stays the same, the peak load band is reduced by two thirds, and the peak demand after 

VRE and storage is reduced by a third. As the scenario assumes a well-developed transmission grid 

across the USA and also encompasses a sizeable amount of short-term storage, total curtailment is only 

3% of gross VRE generation. 

The RE scenario (Figure 11, right) for the US in 2050 shows a situation that seems more extreme from 

today’s perspective: not being allowed to deploy either nuclear or CCS, the model increases the share of 

wind and solar to 82% of demand before curtailment, or 75% of demand after curtailment is deducted. 

At such high wind and solar shares, baseload is reduced to below 10% of peak demand. The remaining 

load bands are covered by a mix of hydro power, gas plants (both combined cycle and simple 

combustion turbines), and CSP. The CSP design represented in REMIND is equipped with 12h of thermal 

storage and can use gas or hydrogen for co-firing, which allows these CSP plants to be handled like a 

dispatchable power plant. The high share of wind and PV also increases the required integration 

measures: short-term storage is expanded to 12% of peak demand, and curtailment increases to 7% of 

gross VRE generation. 
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Effect on economic indicators 

The transformation of the energy system under a climate policy consistent with the 2°C target leads to 

electricity price increases of ~ 30% in the short term, as new capital-intensive power plants need to be 

constructed and old existing coal capacities are phased out before the end of their lifetime (see Figure 

12). Once this transition phase is over, however, the price markup compared to a reference scenario 

without climate policy decreases to 10-20%. Interestingly, the scenario without nuclear and CCS in the 

power sector shows only a very small additional price increase compared to the Tax30 scenario.  

 

 

Figure 12 : Electricity price evolution over in time in the EU in the reference scenario, the Tax30 scenario and the RE Tax30 
scenario. 

From a macroeconomic perspective, the long-term mitigation costs16 associated with reaching the 2°C 

target with a likelihood of >66% are about 1.87% of cumulated discounted consumption – if all 

technologies are available. Note that mitigation costs neither comprise the avoided impacts of climate 

change nor the co-benefits of mitigation. By running an additional set of scenarios where we treat wind 

and PV as dispatchable technologies, we can extract the influence that the detailed representation of 

the power sector has on mitigation costs: Explicitly representing the correlation between wind, solar and 

load through RLDCs increases the mitigation costs by a third from 1.4% to 1.87%. When comparing the 

RLDC-based model version with the previous representation of VRE in REMIND, which was based on 

share-dependent cost markups [28], we see that most of the variability-induced mitigation cost markup 

was already represented: total mitigation costs with the old implementation are 93% of the total 

mitigation costs with the new implementation. However, the new RLDC-based implementation has a 

number of striking advantages, most importantly a region-specific representation of integration 

challenges, a detailed representation of short-term storage and an endogenous adaptation of the non-

VRE capacity mix in response to increasing VRE shares. 

                                                           
16

 Here measured in the reduction of consumption between the reference and the policy scenario, cumulated from 
2010 to 2100 and discounted at a rate of 5%, divided by the value in the reference scenario. 
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Figure 13: Comparison of global mitigation costs between different representations of VRE variability. Mitigation costs to 
achieve the 2°C target with >2/3 likelihood increase by 34 percent when representing the variability of wind and solar with 
RLDCs as presented in this paper, compared to a counterfactual scenario where PV and wind are represented as dispatchable 
technologies. Most of these costs were already represented in the previous, much simpler, parameterization of variability in 
REMIND, which relied on share-dependent cost markups [28]. 
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4. Conclusion 
As VRE generation costs decrease below those of conventional generation, in particular if meaningful 

CO2 pricing schemes are established, integration challenges increasingly determine the role VRE have to 

play for power sector decarbonization. For energy-economy-climate models used for deriving long-term 

climate-change-mitigation scenarios, improving the representation of both VRE integration challenges 

and opportunities is among the highest priorities. This paper contributes three-fold to this goal: 

1. It derives RLDCs that capture VRE integration challenges for eight world regions and a broad 

range of VRE shares and mixes. The RLDCs and underlying global VRE time series are made 

publicly available. 

2. It explores how short-term storage changes RLDCs and mitigates region-specific integration 

challenges. 

3. It refines the RLDC approach that allows representing major integration challenges and options 

in large-scale energy-economy-climate models by implementing RLDCs, and presents resulting 

mitigation scenarios for the REMIND model. 

RLDCs capture the temporal matching of VRE supply with load, and hereby account for the most 

important economic impact of VRE variability. With increasing VRE generation, its load-matching 

becomes unfavorable, i.e., the VRE capacity credit decreases, the utilization of non-VRE power plants 

decreases and VRE overproduction grows. These impacts can become substantial and tend to be more 

costly than additional grid and balancing requirements of VRE. 

We derive consistent RLDCs for eight world regions from hourly time series for wind, PV, and load, 

spanning a range of gross wind and PV shares from 0 to 120%. This data analysis lays the ground for 

moving beyond the EU/US-centeredness predominant in previous integration studies. We also estimate 

the impact of a cost-efficient deployment of short-term storage for the broad range of RLDCs based on 

DIMES, a one-node dispatch and investment model with hourly resolution. A main finding from deriving 

RLDCs is that if long-distance transmission grids within a region can be expanded to pool VRE supply and 

power demand, all eight analyzed world regions reach VRE shares of 40% with less than 4% curtailment, 

and all regions (except for India and Japan) reach VRE shares of 80% with less than 13% curtailment. Our 

results also indicate that without a representation of short-term storage (operating on diurnal time 

scales), the potential of solar PV tends to be underestimated. 

The RLDC approach as implemented in REMIND differentiates between a broad range of wind and solar 

PV shares, a number of world regions, and includes the effect of potential integration measures such as 

storage, transmission grid investments for large area pooling (a default assumption in the REMIND 

model), and the adaptation of the non-VRE generation capacities in response to VRE deployment. The 

methodological merits allow for a greater consistency between global scenario results with detailed 

region-specific power sector results of partial models that are closer to engineering and planning reality. 

This methodological advancement is of key importance for making climate-change-mitigation scenarios 

more robust and credible, and hence more relevant for high-quality policy advice. In particular, the new 

approach allows for a more accurate estimation of the role of VRE in low-carbon transformation 

scenarios and mitigation costs. 
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Even if integration challenges are accurately accounted for, VRE play a prominent role in power sector 

decarbonization. For achieving the 2° target, the REMIND model shows a cost-optimal energy system 

transformation where wind and solar become the backbone of electricity supply. On a global scale, wind 

and solar together supply more than 70% of total electricity demand from 2070 onwards in this 

scenario. Moderate VRE shares of about 15-40% are reached in most regions by 2030 at low integration 

challenges if transmission grids are assumed to expand to allow regional pooling of variability. At higher 

VRE shares, additional VRE integration options including short-term storage, hydrogen electrolysis, and a 

shift in the non-VRE capacity mix towards peak plants with low specific investment costs, increasingly 

help to mitigate integration challenges and harness the economic potential of VRE. In addition, in 

regions where wind and solar are seasonally anti-correlated, an even mix of wind and solar tends to 

reduce integration challenges. 

Achieving the 2°C target imposes mitigation costs of 1.87% of global discounted consumption from 

2010-2100. In a counterfactual scenario where wind and PV are treated as dispatchable technologies, 

mitigation losses would decrease to 1.4%. We find that the earlier simplified modelling of variability in 

the REMIND versions 1.3-1.5 already represented most of the variability-induced cost markups, so that 

total mitigation costs with the old approach are 93% of total mitigation costs with the RLDC-based 

model. 

While this paper provided a comprehensive description of the RLDC approach, this representation of 

variability is not final and should be further refined in the future. Most importantly, the data basis for 

deriving region-specific RLDCs should be improved in particular with regard to load data. Data gaps 

should be filled and the robustness should be increased by using hourly load time series and several 

years for all countries in each model region. Potential changes in the future load profiles and demand 

response should be considered. In addition, the assumption of region-spanning long-distance 

transmission grids should be reviewed for regions other than Europe and the US. For the time being, this 

paper presents a first parameterization for most world regions and thereby takes an important step 

towards improving the robustness of energy-economy-climate models and their representation of wind 

and solar around the world. 
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A. Appendix 

A.1. Polynomial coefficients 
In section 2.5 we report that six parameters control the changes of the implemented RLDCs with 

increasing wind and solar PV shares. These parameters are residual peak load 𝐻𝑃, the curtailment rate 𝛾 

and four cumulative heights 𝐻1..4 of the load bands that build the stepwise RLDC approximation (Figure 

14). 
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Figure 14: The RLDC model representation is controlled by six parameters: four cumulative heights 𝑯𝟏..𝟒 of the load bands, 
residual peak load 𝑯𝑷 and the curtailment rate 𝜸. 

In addition, two more parameters are endogenously determined in DIMES for all VRE shares and mixes 

and then made an exogenous input to the REMIND model: short-term storage capacity and 

corresponding storage costs. 

Each of the eight parameters is controlled by a third-degree polynomial function 𝐹(𝛼, 𝛽) depending on 

wind and PV share of the form shown in equation (1) where 𝛼 and 𝛽 are the wind and solar share and 

𝑎𝑥𝑥 the polynomial coefficients. 𝛼 and 𝛽 are given in units of total load, i.e., if 𝛼 = 1 annual wind 

generation equals annual load. These shares are calculated before curtailment, which is why 𝛼 and 𝛽 do 

not necessarily equal the final VRE share in consumption and might be higher than 1. 

𝐹(𝛼, 𝛽) = 𝑎00 + 𝑎10𝛼 + 𝑎01𝛽 + 𝑎20𝛼
2 + 𝑎02𝛽

2 + 𝑎11𝛼𝛽 + 𝑎21𝛼
2𝛽 + 𝑎12𝛼𝛽

2 + 𝑎30𝛼
3

+ 𝑎03𝛽
3 

(1)   

Table 5 shows the coefficients for all seven parameters and eight REMIND model regions. The remaining 

three REMIND model regions have no specific parameterization but are approximated with the same 

coefficients as related model regions (Europe is used as a proxy for Russia, India for Other Asia, USA for 

Rest Of the World). 
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Table 5 : Coefficients of polynomial functions that determine seven parameters for REMIND model regions. 

 

Curtail-

ment rate

ɣ

Short-term 

storage 

capacity

Short-term 

storage 

cost

Height 

load band 

H 1

Height 

load band 

H 2

Height 

load band 

H3

Height 

load band 

H4

Residual 

peak load

Hp

Share of 

VRE 

generation

Share of 

peak load

$ per W of 

peak load

a00 0.000 0.000 0.000 1.301 1.175 1.058 0.871 1.386

a10 0.048 0.000 0.000 -1.066 -1.189 -1.013 -1.138 -0.588

a01 0.017 0.000 0.000 -0.467 -0.806 -0.756 -1.729 -0.483

a20 -0.220 0.039 0.038 0.602 0.783 0.124 0.064 0.013

a11 -0.191 0.513 -0.008 -0.585 0.402 -0.588 1.359 -0.662

a02 -0.046 1.435 1.157 -0.171 1.013 0.004 1.135 -0.397

a30 0.336 -0.020 -0.018 -0.172 -0.302 0.024 0.151 0.079

a21 0.556 0.000 0.163 -0.223 -0.993 0.341 -0.281 0.000

a12 0.191 -0.197 0.731 0.346 -0.657 0.108 -0.476 0.255

a03 0.309 -0.736 -0.593 0.158 -0.578 0.112 -0.244 0.299

R2
0.935 0.842 0.923 0.991 0.993 0.991 0.979 0.964

a00 0.000 0.000 0.000 1.224 1.160 1.080 0.875 1.312

a10 0.005 0.000 0.000 -0.707 -0.962 -1.014 -1.308 -0.627

a01 0.002 0.000 0.000 -0.142 -0.219 -0.712 -1.893 -0.377

a20 -0.064 0.106 0.026 0.094 0.530 0.260 0.367 0.286

a11 -0.059 0.642 0.599 -1.118 -0.615 -0.822 1.703 -0.678

a02 0.112 1.293 0.743 -0.615 -0.316 0.106 1.441 -0.594

a30 0.247 0.003 0.059 0.018 -0.257 -0.096 0.041 -0.133

a21 0.393 -0.379 -0.283 0.252 -0.261 0.346 -0.418 0.293

a12 0.159 0.109 0.403 0.576 0.438 0.429 -0.638 0.265

a03 0.062 -0.366 0.143 0.162 -0.023 -0.140 -0.367 0.278

R
2

0.892 0.958 0.968 0.991 0.996 0.994 0.986 0.978

Parameter

Normal ized such that the sum of the four RLDC boxes  i s  the 

share of tota l  load that needs  to be covered by non-VRE 

generation (i .e. 1 for no VRE)

Eu
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n
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a00 0.000 0.000 0.000 1.111 1.060 1.020 0.960 1.182

a10 0.002 0.059 0.016 -0.614 -0.685 -0.872 -1.749 -0.517

a01 0.002 0.000 0.000 -0.064 -0.085 -0.382 -2.195 -0.127

a20 0.190 -0.056 -0.011 0.616 0.665 0.705 1.020 0.484

a11 -0.052 0.368 0.493 -0.808 -1.068 -1.165 2.389 -0.296

a02 0.052 1.779 1.008 -0.574 -0.323 -0.117 1.791 -0.833

a30 0.150 0.018 0.002 -0.292 -0.357 -0.373 -0.205 -0.195

a21 0.306 0.024 -0.085 0.016 -0.045 -0.020 -0.636 -0.140

a12 0.301 -0.311 -0.209 0.611 0.836 0.836 -1.001 0.348

a03 0.161 -0.807 -0.051 0.102 -0.086 -0.116 -0.487 0.343

R
2

0.835 0.939 0.964 0.974 0.986 0.992 0.988 0.977

a00 0.000 0.000 0.000 1.381 1.176 1.029 0.872 1.544

a10 0.018 0.001 0.000 -0.838 -0.949 -0.957 -1.280 -0.687

a01 0.006 0.000 0.000 -1.558 -0.881 -0.555 -1.601 -1.934

a20 -0.119 0.029 0.036 0.492 0.420 0.100 0.238 0.330

a11 -0.112 0.490 0.235 -1.032 -0.190 -0.644 1.588 -0.822

a02 0.052 1.314 0.819 1.853 0.924 -0.219 0.915 2.325

a30 0.263 0.026 -0.012 -0.257 -0.206 -0.001 0.109 -0.186

a21 0.532 -0.314 -0.181 0.477 -0.084 0.358 -0.425 0.317

a12 0.175 0.128 0.506 0.351 -0.287 0.195 -0.527 0.454

a03 0.153 -0.674 -0.233 -0.963 -0.574 0.138 -0.159 -1.148

R
2

0.953 0.911 0.935 0.989 0.993 0.994 0.983 0.975

a00 0.000 0.000 0.000 1.275 1.147 1.045 0.891 1.429

a10 0.001 0.000 0.000 -0.802 -0.985 -1.030 -1.462 -0.514

a01 0.000 0.226 0.000 -0.719 -0.419 -0.565 -1.813 -1.172

a20 -0.036 0.067 0.037 0.592 0.856 0.633 0.607 0.337

a11 -0.007 0.800 0.853 -1.065 -0.622 -0.797 1.854 -1.125

a02 0.280 0.971 1.225 0.369 0.143 0.040 1.309 0.901

a30 0.330 -0.034 -0.014 -0.236 -0.397 -0.311 -0.051 -0.121

a21 0.135 0.000 0.000 0.395 -0.163 0.031 -0.474 0.093

a12 0.009 -0.308 -0.328 0.302 0.053 0.259 -0.670 0.471

a03 0.041 -0.542 -0.628 -0.107 -0.093 0.033 -0.315 -0.287

R2
0.910 0.867 0.926 0.993 0.995 0.997 0.983 0.986
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A.2. Equations of the RLDC approach 
In the following we show the core equations of representing RLDCs in the REMIND model. All equations 

are valid for each time step, i.e., every variable also depends on the time step, which is not written out 

a00 0.000 0.000 0.000 1.217 1.154 1.073 0.885 1.283

a10 0.050 0.084 0.010 -0.997 -1.058 -1.045 -1.133 -0.795

a01 0.050 0.000 0.000 -0.136 -0.387 -1.202 -1.779 -0.312

a20 -0.185 -0.125 0.003 0.362 0.252 0.113 0.066 0.231

a11 -0.351 0.409 0.339 -0.530 -0.661 -0.293 1.542 -0.436

a02 -0.206 1.571 0.930 -0.807 -0.276 1.335 1.189 -0.743

a30 0.229 0.062 0.009 -0.109 -0.055 -0.004 0.136 -0.039

a21 0.650 -0.133 -0.185 -0.296 -0.118 0.304 -0.294 0.000

a12 0.621 -0.091 0.083 0.448 0.553 0.073 -0.561 0.168

a03 0.367 -0.806 -0.227 0.374 0.058 -0.799 -0.260 0.442

R
2

0.872 0.907 0.943 0.989 0.989 0.991 0.983 0.969

a00 0.000 0.000 0.000 1.165 1.093 1.043 0.929 1.225

a10 0.050 0.023 0.000 -0.977 -0.979 -1.065 -1.206 -0.977

a01 0.044 0.000 0.000 0.000 -0.137 -0.703 -2.062 -0.084

a20 -0.196 -0.031 0.038 0.409 0.284 0.265 0.100 0.742

a11 -0.344 0.547 0.384 -0.714 -0.814 -0.592 1.817 -0.426

a02 -0.141 1.619 0.803 -0.827 -0.426 0.344 1.557 -0.985

a30 0.258 0.014 -0.018 -0.106 -0.077 -0.096 0.143 -0.273

a21 0.681 -0.019 -0.184 -0.058 -0.084 0.206 -0.399 -0.294

a12 0.598 -0.392 0.239 0.586 0.713 0.555 -0.688 0.478

a03 0.266 -0.579 0.172 0.236 0.007 -0.336 -0.392 0.410

R
2

0.846 0.936 0.940 0.986 0.991 0.988 0.983 0.976

a00 0.000 0.000 0.000 1.176 1.131 1.037 0.908 1.201

a10 0.008 0.109 0.000 -0.778 -0.921 -0.855 -1.039 -0.447

a01 0.004 0.000 0.000 -0.470 -0.658 -0.629 -1.881 -0.550

a20 -0.073 -0.060 0.067 0.205 0.313 -0.045 -0.157 0.055

a11 -0.087 0.588 0.725 -0.674 -0.052 -0.757 1.434 -0.875

a02 0.073 1.571 1.093 0.019 0.680 0.239 1.282 0.076

a30 0.211 0.009 -0.034 -0.034 -0.133 0.054 0.233 -0.007

a21 0.426 0.000 -0.177 -0.107 -0.412 0.259 -0.273 0.189

a12 0.252 -0.226 -0.066 0.471 -0.200 0.349 -0.489 0.339

a03 0.191 -0.806 -0.434 -0.023 -0.491 -0.174 -0.291 0.005

R2
0.883 0.903 0.946 0.991 0.994 0.996 0.985 0.982
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here for better readability. Figure 15 illustrates the stepwise RLDC approximation in REMIND and 

indicates core variables. 

 

Figure 15: Key variables representing the RLDCs in the model are the individual heights of four load bands 𝑪𝟏. . 𝑪𝟒, reserve 
capacity 𝑪𝟓 (peak capacity + reserve margin 𝜟) and curtailment rate 𝜶. The widths of the bands 𝝂𝒊 are constant and 
determine the FLH of non-VRE plants that cover this part of load. Non-VRE plants operating in the base-load band have an 
adjusted capacity factor of 7500 annual operating hours. 

From the cumulate height 𝐻𝑖 of the four load bands i determined by a polynomial function as described 

in A.1, the height of the individual load bands 𝐶𝑖 is calculated according to: 

𝐶𝑖 = 𝑚𝑎𝑥(𝐻𝑖, 0) − max(𝐻𝑖−1, 0)𝑓𝑜𝑟𝑖 = 1. .4 (2)   
The max() function is used here because the polynomial fit function of 𝐻𝑖 can become negative at the 

boundaries of the parameter space, i.e. at very high shares of VRE when RLDCs become very flat and e.g. 

the base-load band vanishes. Negative fit values are allowed for to increase the accuracy of the fit within 

the relevant positive parameter space at lower VRE shares, e.g. when the base-load band did not yet 
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vanish. Constraining the fit functions to only positive values would require higher polynomial orders to 

capture the asymptotic behaviour of some parameters e.g. the base-load height approaches zero quickly 

with increasing VRE share. 

𝐶𝑖 capture the shape of the load-band representation of the RLDC, which is region-specific and changes 

with VRE share and mix. Reserve capacity  𝐶5 consists of peak capacity, which is capacity that operates 

only a few hours per year to cover residual peak load, and a capacity margin 𝛥. The capacity margin 

provides additional firm capacity to assure reliability in case of contingency events, e.g. outages of 

plants or grid connections. The specific margin depends on region-dependent industry standards. We 

apply a reserve margin of 30% of peak load. 

The load bands have to be filled by dispatchable technologies. Thus, for every non-VRE power 

generating technology 𝑡𝑒 the respective total installed capacity 𝐶𝑡𝑜𝑡,𝑡𝑒 is endogenously decomposed into 

five parts (𝐶1,𝑡𝑒, 𝐶2,𝑡𝑒, 𝐶3,𝑡𝑒, 𝐶4,𝑡𝑒, 𝐶5,𝑡𝑒) that operate in the four load bands or act as reserve capacity. 

𝐶𝑡𝑜𝑡,𝑡𝑒 = ∑ 𝐶𝑖,𝑡𝑒
𝑖=1..5

 (3)   

When adding all the capacity over all non-VRE technologies that operate in a specific load band, this 

should equal the total capacity demand 𝐶𝑖 for this load band (equation 4). In the base-load band the 

maximum number of FLH of generators is limited to 7500 per year to account for plant outages. Hence, 

some more base-load capacity needs to be allocated than the parameterized height 𝐶1 indicates 

(equation 5). 

𝐶𝑖 =∑𝐶𝑖,𝑡𝑒
𝑡𝑒

𝑓𝑜𝑟𝑖 = 2. .4 

𝐶1 =
7500ℎ

8760ℎ
∑𝐶1,𝑡𝑒
𝑡𝑒

𝑓𝑜𝑟𝑖 = 1 

(4)   
 
   

(5)  

Additionally, there is a capacity adequacy equation that  

The total peak capacity requirements are represented in a single model equation (similar to [15], [51]), 

which requires that the sum of all non-VRE capacities is larger than the residual peak load 𝐻𝑃 (at a given 

wind and PV share) plus the capacity reserve margin 𝛥, which is described above. 

𝐻𝑃 + 𝛥 ≤∑𝐶𝑡𝑜𝑡,𝑡𝑒
𝑡𝑒

 (6)   

The annual capacity factor of any generation unit equals the width 𝜈𝑖 of the respective load band in 

which the unit operates and is in principle independent of the specific technology 𝑡𝑒. Planned outages of 

power plants are assumed to be conducted in the "1 − 𝜈" part of the year, i.e., while the plants are not 

needed. Unplanned outages are compensated by the additional reserve capacity margin. 

The balance equation for total annual demand 𝐷 and generation is given by: 

𝐷 =∑∑𝐶𝑖,𝑡𝑒𝜈𝑖
𝑡𝑒𝑖

+ (1 − 𝛾)𝐺𝑣𝑟𝑒 (7)   
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The first summand is the generation of all non-VRE technologies 𝑡𝑒. The second summand is the part of 

VRE generation 𝐺𝑣𝑟𝑒 that can be used to cover demand. 𝛾 is the curtailment rate of VRE generation, 

which is also parameterized by polynomial functions depending on the endogenous share and mix of 

VRE. 

For some technologies, additional restrictions apply: 

 Combined heat and power plants have a maximum total capacity factor of 0.6 to represent that 

there is not always demand for heat. 

 Hydro power is only counted with 80% towards the capacity adequacy equation to represent 

that some part of run-of-river hydro cannot contribute to meet peak demand. 

 CSP is treated as a dispatchable technology, but requires a certain amount of either gas or 

hydrogen for co-firing. This amount increases as 

1. CSP is dispatched into the base-load band or lower mid-load band 

2. The share of CSP in the total generation increases 

3. The share of PV in the total generation increases 

4. CSP is used in a region with suboptimal resources 

 Hydrogen storage : The model can invest into two types of electrolysis, one a dedicated 

electrolysis plant that is run at a capacity factor of 90%, and accordingly increases load, the 

other one a flexible electrolysis plant that uses curtailed electricity to produce hydrogen.  

Accordingly, it runs at low capacity factors that endogenously depend on the amount of 

curtailment  - the higher the curtailment, the higher the capacity factor of the electrolysis plant. 

 

A.3. Variation of grid costs 
As discussed in section 2.3 and 2.6, the model scope of REMIND makes a detailed representation of 

transmission grids impossible. Instead, the model relies on an aggregated representation of grid costs 

through two channels: i) all electricity use requires investment into a general transmission and 

distribution grid, which results in grid costs of 25-30$/MWh, ii) an additional cost markup on all 

electricity production from VRE represents the requirement to expand the transmission grid to pool 

variability over large areas. This second component was fitted to the results from the detailed hourly 

power sector model REMix, which represents 16 EU member states and endogenously models cost-

optimal grid expansion [29]. For the EU, these cost markups amount to 6-11$/MWh VRE, while for larger 

regions like China, AFR or LAM we double these costs to 13-23$/MWh VRE. From the range of published 

grid costs numbers (see [13] for a literature review of VRE-related grid costs) we think that these 

assumptions are a reasonable starting point, but again, most of the previous modelling results focus on 

US and EU, so much better disaggregated modelling for other world regions is required to improve the 

knowledge about region-specific grid expansion costs. 

To test the impact of the grid cost assumptions on the deployment of VRE, we ran sensitivity scenarios 

where we increased/decreased the VRE-related grid costs for all regions by a constant factor. Figure 16 
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shows that doubling the grid costs reduces the contribution of VRE to total electricity production by 

13%, while halving them increases it by 8%. 

 

Figure 16 : Impact of varying the VRE-dependent grid cost markups on the total VRE deployment, here measured by the 
share of VRE in cumulated 2010-2100 electricity. 
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Highlights: 

 

1. We model wind and solar integration in a global energy-economy-climate model 

2. We account for region-specific VRE integration challenges and options 

3. We derive residual load duration curves (RLDCs) for 8 world regions 

4. RLDCs and underlying regional hourly VRE time series are made publicly available 

5. Short-term storage changes RLDCs and mitigates integration challenges 


